
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Saving Bits Forever:
A Systems View of Long-
term Digital Storage

Mary Baker
HP Labs
http://www.hpl.hp.com/personal/Mary_Baker

June 5, 2006 2

Outline

• The digital preservation problem
• Strategies for addressing the problem
• LOCKSS (Lots of Copies Keeps Stuff Safe)
• The Pharaoh Project
• Conclusion:
− Static data requires dynamic system

June 5, 2006 3

The need for long-term digital
storage
• Emerging web services
−Email, photo sharing, videos, web site archives

• Regulatory compliance and legal issues
−Sarbanes-Oxley, HIPAA, intellectual property litigation

• Many other fixed-content repositories
−Scientific data, intelligence info, libraries, movies, music

June 5, 2006 4

Physical to virtual transformation
• Tools to move from analog to digital content
−But no understanding of how to keep digital content

• We’re used to throwing technology away
−But now we have assets beyond the technology

• We’ve created an explosion in fixed content
−Some of which we may want to keep forever

14th

century
BC

~1086 AD

1970’s

June 5, 2006 5

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

Long-term
content suffers
from more
threats than
short-term
content

June 5, 2006 6

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 7

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 8

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 9

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 10

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 11

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 12

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 13

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 14

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 15

Why is long-term storage hard?

• Large-scale disaster
• Human error
• Media faults

• Component faults
• Economic faults
• Attack
• Organizational faults

• Media/hardware
obsolescence

• Software/format
obsolescence

• Lost context/metadata

June 5, 2006 16

Why is all this still a problem?
• Assumption of sufficient budget
• Assumption of replica independence
• Assumption of fault visibility, but latent faults…
− Lurk subversively until data accessed
−Aren’t unearthed through archival workloads
−Accrue over time until too late to fix
−Become significant

• At large scale
• Over long time periods

June 5, 2006 17

Latent and transient faults on disk

Faults observed

Total objects

Latent + Transient

Fault Breakdown

Transient: Zero read

Latent: File transfer

Latent: Bit rot ?

Transient: Zero read: 5046 = 1 / 296
Latent: File transfer: 1218 = 1/ 1226
Latent: Bit Rot?: 148 = 1 / 10088

Total: 1/ 234

Total objects: 1,492,993
Total errors: 6412

Faults observed Fault breakdown

Total objects
Faults

Transient zeroed
File transfer
Bit rot?

Source: 810 days of Internet Archive failure data over 1896 disks

June 5, 2006 18

Strategies for dealing with this mess
• Address high costs of preservation

− Commodity hardware
− Reduce on-going costs
− Better cost models

• Replicate content, break correlations between replicas
− Geographic, administrative, platform, media, formats…

• Audit replicas proactively to detect damage
− Data must be accessible to do this cheaply!

• Migrate content to maintain usability
− To new hardware, formats, keys…

• Avoid external dependencies
− Includes vendor lock-in, DRM issues

• Plan for data exit

June 5, 2006 19

The LOCKSS solution:
Exploit natural replication across libraries

“… let us save what remains: not by vaults and locks
which fence them from the public eye and use in
consigning them to the waste of time, but by such a
multiplication of copies, as shall place them beyond the
reach of accident.”

Thomas Jefferson, 1791

June 5, 2006 20

Exploit existing replication
• Lots of Copies Keep Stuff Safe www.lockss.org
• Many libraries subscribe to the same materials
• Appliance used by libraries around the world
−Cheap PC with some storage
− Libraries maintain existing relationships with publishers
−Materials subscribed to collected/preserved by

LOCKSS
−Run a P2P audit/repair protocol between LOCKSS

peers
−Not a file sharing application!

• Survive or degrade gracefully in the face of
− Latent storage faults & sustained attacks

• Make it hard to change consensus of population

June 5, 2006 21

The LOCKSS audit/repair protocol
• A peer periodically audits its own content
−To check its integrity
−Calls an opinion poll on its content every 3 months
−Gathers repairs from peers

• Raises alarm when it suspects an attack
−Correlated failures
− IP address spoofing
−System slowdown

• Currently updating deployed system

June 5, 2006 22

Sampled opinion poll
• Each peer holds for each document

− Reference list of peers it has discovered
− History of interactions with others (balance of contributions)

• Periodically (faster than rate of storage failures)
− Poller takes a random sample of the peers in its reference list
− Invites them to vote: send a hash of their replica

• Compares votes with its local copy
− Overwhelming agreement (>70%) Sleep blissfully
− Overwhelming disagreement (<30%) Repair
− Too close to call Raise an alarm

• Repair: peer gets pieces of replica from disagreeing peers
− Re-evaluates the same votes

• Every peer is both poller and voter

June 5, 2006 23

Opportunities that make this
possible
• Massive redundancy ``for free’’
−Peers (libraries) demand whole local replicas of content
−Replicas independent of each other

• Geographic, administrative, platform, technology, financially…

• Digital preservation is about preventing change
−Not precipitating it
−Efficient system is not a goal
−Go no faster than necessary to fail as slowly as

possible

June 5, 2006 24

Threat model
• Beyond natural damage, assume we’re attacked
−Platform/social attacks

• Mitigate further damage through protocol
• Top adversary goals
−Stealth modification

• Modify majority of replicas to contain adversary’s version
• Without getting caught (setting off alarms)

−Attrition (denial of service)
• Waste peers’ resources at network, application, human layers
• Prevent audit until storage failures overwhelm & damage

system

• Other adversary goals
−Content theft, free-riding, false alarms, etc.

June 5, 2006 25

Limit the rate of operation
• During initiation of new polls
−Peers determine their rate of calling polls autonomously
−No changes due to external stimuli
−Adversary must wait for next poll to attack as a voter

• Keep poll rate constant to cap attack rate
• Go no faster than necessary
−So system fails as slowly as possible

June 5, 2006 26

Bimodal alarm behavior
• Most replicas the same

− No alarms

All
Good

All
Bad

P
ro

ba
bi

lit
y

of
 a

vo
id

in
g

al
ar

m
s

June 5, 2006 27

Bimodal alarm behavior
• Most replicas the same

− No alarms
• In between

− Alarms very likely

All
Good

All
Bad

P
ro

ba
bi

lit
y

of
 a

vo
id

in
g

al
ar

m
s

June 5, 2006 28

Bimodal alarm behavior
• Most replicas the same

− No alarms
• In between

− Alarms very likely
• To achieve corruption

− Adversary must pass
through “moat” of
alarming states

− Damaged peers vote
with undamaged peers

− Rate limitation helps

All
Good

All
Bad

Adversary’s
Intention

P
ro

ba
bi

lit
y

of
 a

vo
id

in
g

al
ar

m
s

June 5, 2006 29

Probability of irrecoverable damage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

ba
bi

lit
y

of
irr

ec
ov

er
ab

le
 d

am
ag

e

Proportion of peers initially subverted

10%
20%
30%
40%

Preservation succeeds for up to 35%
subversion

•For powerful attacker (unlimited CPU/identities)
•Attacking for 30 years

June 5, 2006 30

The Pharaoh Project

Low-cost, long-term,
reliable storage for
large repositories

June 5, 2006 31

The problem with large repositories
• Few replicas naturally available
− Initial storage outlay can be daunting

• Large on-going costs
−Data center space is expensive

• Preservation “best practices” contradict IT trends
−Consolidation versus replication
−Homogeneity versus diversity
−Administrative centralization versus independence

June 5, 2006 32

Why do we have a chance?
• Exploit replication for disaster recovery
−No longer require backup processes
−Poor synchronization between replicas okay

• Repository workload has limited requirements
−Does not need low latency access
−Does not need high rate of update in place

• Use commodity storage to bring down outlay
costs
−Address reliability with audit processes
−Use an easily evolvable architecture

• Bring down on-going costs through spin-down,
etc.

L hi h d it

June 5, 2006 33

How do we evaluate trade-offs?
• How much replication?
• How reliable do individual replicas need to be?
• How do we audit?
−What?
−Where?
−How often?

• Latency/power/reliability?
• We need better modeling tools!

June 5, 2006 34

Can we model long-term reliability?
• Abstract reliability model for replicated data
−Applies to all units of replication
−Applies to many types of faults

• Extend RAID model
−Account for latent as well as visible faults
−Account for correlated faults: temporal and spatial

• Simple, coarse model
−Suggest and compare strategies (choose trade-offs)
−Point out areas where we need to gather data

• Not for exact reliability numbers

June 5, 2006 35

Our current approach
• Start with two replicas, then add more
• Derive MTTDL of mirrored data in the face of
−Both immediately visible and latent faults

• Mirrored data is unrecoverable
− If copy fails before initial fault can be repaired

• Time between fault and its repair is
−Window of Vulnerability (WOV)

June 5, 2006 36

Window of vulnerability
Temporal overlap of faults

Time

V
is

ib
le Recovery

La
te

nt

Fault Repaired

Hidden
Fault

Detection

Detected

Recovery

Repaired

"WOV"--Visible fault

"WOV" -- Latent fault

•Want detection time to be small

June 5, 2006 37

Data loss cases with 2 replicas

• Overall probability = sum of each case

La
te

nt
Vi

si
bl

e

"WOV"

"WOV"

"WOV"

"WOV"

Time

Fi
rs

t f
au

lt

Visible LatentSecond fault

June 5, 2006 38

Spatial overlap of faults

Overlap

R1

R2

Fault

Lost

•Faults may be bits, sectors, files, disks, arrays,
etc.
•If any two faults overlap, data is lost
•The smaller the faults, the less likelihood of

•Temporal overlap alone overstates likelihood of data loss

June 5, 2006 39

Completing the model
• Multiply temporal and spatial probabilities
−For each of the four loss cases

• Correlation: use multiplicative scaling factors for
−Temporal correlation of faults
−Spatial correlation of faults

• We also extend the model for further replication

June 5, 2006 40

Implications
• Must audit for latent faults
− Important to reduce detection time
−Even if latent faults are infrequent
−Content must be accessible to do this cheaply!!

• Need independence of additional replicas
• MTTDL varies quadratically with both MV & ML
−Cannot sacrifice one for the other

• If sizes of faults very small, less overlap
−Correlation of faults can cause big problems

June 5, 2006 41

Example using the model
• How much does it help to shorten detection time?
• Portion of real archive (www.archive.org)
−Monthly snapshots of web pages
− 1.5 million immutable files
− 1795 200GB SATA drives, “JBOD”
−Mean time to visible (disk) failure: 20 hours
−Almost 3 years of monthly file checksums
−Mean time to latent fault 1531 hours

June 5, 2006 42

Reliability vs. Auditing

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4

Auditing interval (years)

No auditing

No latent errors

With auditing

With disk
exercise penaltyM

TT
D

L
(y

ea
rs

)

Scenario: audited replicated archive

June 5, 2006 43

Current and future work
• Using further modeling to choose
−Auditing rates & patterns
−Encoding and replication techniques

• Gather more failure data & introduce cost models
• Fire drill design
• Techniques for evolving
−Metadata
−Access controls

• Experiments with disk spin up/down reliability
• Building a low-power, high-density repository
−For office/warehouse/home/trailer, not data center

June 5, 2006 44

Dynamic long-term architecture
• Independent replicas

− Geographic, administrative, platform
− Gains from extra replication offset by correlations

• Inexpensive audit of content
− Fix latent faults at all levels before they accrue
− Content must be accessible to do this cheaply!!
− Backup to high-latency off-line media is not a solution
− Includes “repairing” endangered content/metadata

• Allow for on-going evolution of system
− Components will always heterogeneous and changing

• Keeping data static requires a dynamic system!

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Backup Slides

June 5, 2006 46

Commodity storage managed
differently – up and down the stack

Storage

Storage
containers

On-going,
automatic
mgmt.
processes

System

Use low-end, commodity, online storage
•Currently disks/arrays

User APIs
Flexible presentation strategies over time
Efficient ingestion and data exit strategies

Metadata restructuring for continued usability, content
repurposing
Validation of access controls/roles
Content migration to new formats/infrastructure
End-to-end automatic audit and repair of visible and latent faults

•Latent faults are a big threat in long-term content
•Many sources: human error, attack, bit rot…

Replication across geographies, administrative boundaries
•Replication essential for long-term reliability, low-cost audit

Commodity file system, avoid dependence on external
components
Low-power, high-density packaging

•Mostly spun down

June 5, 2006 47

Temporally correlated faults

EXP
1/MV

EXP
1/(ß *MV)

Fail

OK

R1

R2

R1

R2

R1

R2
R1

R2

June 5, 2006 48

Spatial correlation

R1

R2

Overlap

Fault

Lost

•Multiplicative fudge factor to express spatial correlation

June 5, 2006 49

Economic faults
• Budgets stretched just to ingest data
• Ongoing costs
−Power
−Cooling
−Bandwidth
−System administration
−Equipment renewal
−Domain registration
−Space (rent)

• Lack of tools to predict these costs ahead of time
−Harder to plan for longer lifetime

• It’s the price/bit/year that matters

June 5, 2006 50

Attack
• We tend to worry about short-term intense attack
• Traditional repositories subject to long-term

attack
−Online repositories will be too

• Content destruction, censorship, modification,
theft
− Illegal or legal
−External or internal

• Successful attacks may go unnoticed
−Another example of a latent fault

June 5, 2006 51

Media/hardware obsolescence
• Media & hardware components become obsolete
−Can’t communicate with other system components
− Irreplaceable (or too expensive)

• Particularly acute for removable media
−Readable but no suitable reader device

June 5, 2006 52

Human error
• Humans increasingly the cause of system failures
• Many ways for people to make mistakes
−Accidentally remove/overwrite data
−Accidentally mark data with incorrect permissions
− Lose tapes in transit
− Install bad device drivers
−Etc.

• During archival lifetimes, assume this will occur
• Damage may go undetected

June 5, 2006 53

Component faults
• Take end-to-end view of storage system
−Any component may fail
−Hardware, software, firmware, network, ingestion, etc.

• With long-term view, add things like
− 3rd-party license servers
−Certificate authorities
−URLs
−Name services

June 5, 2006 54

Organizational faults
• Long-term view must include the organization
• Organizational structures die/merge/change
• Digital assets often invisible in reorgs/transfers
• Data vulnerable to single organizations/services

June 5, 2006 55

Software/format obsolescence
• Data still physically accessible/readable
• Cannot be interpreted
− “RAW” formats of digital cameras
−Early word processor formats
−Compression/encryption formats

• Proprietary formats particularly vulnerable

June 5, 2006 56

Loss of context
• Information about the data
− Layout
− Inter-relationships between objects
− Location
−Provenance
−Access restrictions
−Necessary processes, algorithms, software
−Database indices

• Encrypted data particularly vulnerable
−Secrets get lost, leak or get broken

