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A few words about us

• Fourth year PhD with Prof. Bill Dally at Stanford.
• Research interest is computer architecture for deep 

learning, to improve the energy efficiency of neural 
networks running on mobile and embedded systems.

• Recent work on “Deep Compression” and “EIE: Efficient 
Inference Engine” covered by TheNextPlatform.Song Han

Bill Dally

• Professor at Stanford University and former chairman of CS 
department, leads the Concurrent VLSI Architecture Group.

• Chief Scientist of NVIDIA.
• Member of the National Academy of Engineering, Fellow of 

the American Academy of Arts & Sciences, Fellow of the 
IEEE, Fellow of the ACM.

http://www.nextplatform.com/2015/12/08/emergent-chip-vastly-accelerates-deep-neural-networks/


This Talk:

• Deep Compression: A Deep Neural Network 
Model Compression Pipeline. 

• EIE Accelerator: Efficient Inference Engine 
that Accelerates the Compressed Deep 
Neural Network Model.



Deep Learning Next Wave of AI

Image 
Recognition

Speech 
Recognition

Natural Language 
Processing



Applications



App developers suffers from the model size

“At Baidu, our #1 motivation for compressing networks is to bring down the size of the binary file. 
As a mobile-first company, we frequently update various apps via different app stores. We've very 
sensitive to the size of our binary files, and a feature that increases the binary size by 100MB 
will receive much more scrutiny than one that increases it by 10MB.” —Andrew Ng

The Problem:
If Running DNN on Mobile…



Hardware engineer suffers from the model size 
(embedded system, limited resource)

The Problem:
If Running DNN on Mobile…



The Problem:

Intelligent but Inefficient

Network
Delay

Power
Budget

User 
Privacy

If Running DNN on the Cloud…



Solver 1: Deep Compression

Deep Neural Network Model Compression

Smaller Size
Compress Mobile App  

Size by 35x-50x

Accuracy
no loss of accuracy
improved accuracy 

Speedup
make inference faster



Solve 2: EIE Accelerator

ASIC accelerator: EIE (Efficient Inference Engine)

Offline
No dependency on  
network connection

Real Time
No network delay
high frame rate

Low Power
High energy efficiency 
that preserves battery



Deep Compression

• AlexNet: 35×, 240MB => 6.9MB 

• VGG16: 49× 552MB => 11.3MB 

• Both with no loss of accuracy on ImageNet12 

• Weights fits on-chip SRAM, taking 120x less energy than DRAM



Compression Pipeline: Overview



1. Pruning



Pruning: Motivation

• Trillion of synapses are generated in the human brain during the first few months of birth.  

• 1 year old, peaked at 1000 trillion 

• Pruning begins to occur. 

• 10 years old, a child has nearly 500 trillion synapses 

• This ’pruning’ mechanism removes redundant connections in the brain.

[1] Christopher A Walsh. Peter huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.  



Pruning: Result on 4 Covnets



Pruning: AlexNet



AlexNet & VGGNet



Mask Visualization 

Visualization of the first FC layer’s sparsity pattern of 
Lenet-300-100. It has a banded structure repeated 28 times, 
which correspond to the un-pruned parameters in the center of 
the images, since the digits are written in the center.



Pruning also works well on RNN+LSTM

[1] Thanks Shijian Tang pruning Neural Talk



• Original: a basketball player in a white 
uniform is playing with a ball 

• Pruned 90%: a basketball player in a white 
uniform is playing with a basketball

• Original : a brown dog is running through a 
grassy field 

• Pruned 90%: a brown dog is running 
through a grassy area

• Original : a soccer player in red is running 
in the field 

• Pruned 95%: a man in a red shirt and 
black and white black shirt is running 
through a field

• Original : a man is riding a surfboard on a 
wave 

• Pruned 90%: a man in a wetsuit is riding a 
wave on a beach



Speedup (FC layer)

• Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV 

• NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV 

• NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV



Energy Efficiency (FC layer)

• Intel Core i7 5930K: CPU socket and DRAM power are reported by pcm-power utility  

• NVIDIA GeForce GTX Titan X: reported by nvidia-smi utility  

• NVIDIA Tegra K1: measured the total power consumption with a power-meter, 15% AC 
to DC conversion loss, 85% regulator efficiency and 15% power consumed by 
peripheral components => 60% AP+DRAM power



2. Quantization and Weight Sharing



Weight Sharing: Overview



Finetune Centroids



Quantization: Result

• 16 Million => 2^4=16 

• 8/5 bit quantization results in no accuracy loss 

• 8/4 bit quantization results in no top-5 accuracy loss, 
0.1% top-1 accuracy loss 

• 4/2 bit quantization results in -1.99% top-1 accuracy 
loss, and -2.60% top-5 accuracy loss, not that bad-:



Accuracy ~ #Bits on 5 Conv Layer + 3 FC Layer



Pruning and Quantization Works Well Together

Under review as a conference paper at ICLR 2016

Figure 6: Accuracy v.s. compression rate under different compression methods. Pruning and
quantization works best when combined.

Figure 7: Pruning doesn’t hurt quantization. Dashed: quantization on unpruned network. Solid:
quantization on pruned network; Accuracy begins to drop at the same number of quantization bits
whether or not the network has been pruned. Although pruning made the number of parameters less,
quantization still works well, or even better(3 bits case on the left figure) as in the unpruned network.

Figure 8: Accuracy of different initialization methods. Left: top-1 accuracy. Right: top-5 accuracy.
Linear initialization gives best result.

6.2 CENTROID INITIALIZATION

Figure 8 compares the accuracy of the three different initialization methods with respect to top-1
accuracy (Left) and top-5 accuracy (Right). The network is quantized to 2 ⇠ 8 bits as shown on
x-axis. Linear initialization outperforms the density initialization and random initialization in all
cases except at 3 bits.

The initial centroids of linear initialization spread equally across the x-axis, from the min value to the
max value. That helps to maintain the large weights as the large weights play a more important role
than smaller ones, which is also shown in network pruning Han et al. (2015). Neither random nor
density-based initialization retains large centroids. With these initialization methods, large weights are
clustered to the small centroids because there are few large weights. In contrast, linear initialization
allows large weights a better chance to form a large centroid.

6.3 SPEEDUP AND ENERGY EFFICIENCY

Deep Compression is targeting extremely latency-focused applications running on mobile, which
requires real-time inference, such as pedestrian detection on an embedded processor inside an
autonomous vehicle. Waiting for a batch to assemble significantly adds latency. So when bench-

8



3. Huffman Coding



Huffman Coding
Huffman code is a type of optimal prefix code that is commonly used for 
loss-less data compression. It produces a variable-length code table for 
encoding source symbol. The table is derived from the occurrence 
probability for each symbol. As in other entropy encoding methods, more 
common symbols are represented with fewer bits than less common 
symbols, thus save the total space.  



Deep Compression Result on 4 Convnets



Result: AlexNet



AlexNet: Breakdown



Comparison with other Compression Methods

[14] EmilyLDenton,WojciechZaremba,JoanBruna,YannLeCun,andRobFergus.Exploitinglinearstructure within convolutional networks for efficient evaluation. In Advances in Neural 
Information Processing Systems, pages 1269–1277, 2014. 
[15] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014. 
[21] Yangqing Jia. Bvlc caffe model zoo. ZichaoYang,MarcinMoczulski,MishaDenil,NandodeFreitas,AlexSmola,LeSong,andZiyuWang. 
[22] Deep fried convnets. arXiv preprint arXiv:1412.7149, 2014. 
[23] Maxwell D Collins and Pushmeet Kohli. Memory bounded deep convolutional networks. arXiv preprint arXiv:1412.1442, 2014. 



Conclusion

• We have presented a method to compress neural networks without 
affecting accuracy by finding the right connections and quantizing the 
weights.  

• Pruning the unimportant connections => quantizing the network and 
enforce weight sharing => apply Huffman encoding.  

• We highlight our experiments on ImageNet, and reduced the weight 
storage by 35×, VGG16 by 49×, without loss of accuracy.  

• Now weights can fit in cache



Product: A Model Compression Tool for  
Deep Learning Developers

• Easy Version: 
✓ No training needed  
✓ Fast 
x 5x - 10x compression rate 
x 1% loss of accuracy 

• Advanced Version: 
✓ 35x - 50x compression rate 
✓ no loss of accuracy 
x Training is needed  
x Slow 



EIE: Efficient Inference Engine on 
Compressed Deep Neural 

Network
Song Han 

CVA group, Stanford University 
Jan 6, 2015  



ASIC Accelerator that Runs DNN on Mobile

Offline
No dependency on  
network connection

Real Time
No network delay
high frame rate

Low Power
High energy efficiency 
that preserves battery



Solution: Everything on Chip
• We present the sparse, indirectly indexed, weight shared MxV 

accelerator. 

• Large DNN models fit on-chip SRAM, 120× energy savings. 

• EIE exploits the sparsity of activations (30% non-zero). 

• EIE works on compressed model (30x model reduction) 

• Distributed both storage and computation across multiple PEs, 
which achieves load balance and good scalability.  

• Evaluated EIE on a wide range of deep learning models, 
including CNN for object detection, LSTM for natural language 
processing and image captioning. We also compare EIE to 
CPUs, GPUs, and other accelerators. 



Distribute Storage and Processing

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

Central Control 



Inside each PE:



Evaluation

1. Cycle-accurate C++ simulator. Two abstract methods: Propagate and 
Update. Used for DSE and verification. 
2. RTL in Verilog, verified its output result with the golden model in 
Modelsim.
3. Synthesized EIE using the Synopsys Design Compiler (DC) under the 
TSMC 45nm GP standard VT library with worst case PVT corner. 
4. Placed and routed the PE using the Synopsys IC compiler (ICC). We 
used Cacti to get SRAM area and energy numbers. 
5. Annotated the toggle rate from the RTL simulation to the gate-level 
netlist, which was dumped to switching activity interchange format 
(SAIF), and estimated the power using Prime-Time PX. 



Baseline and Benchmark
• CPU: Intel Core-i7 5930k 

• GPU: NVIDIA TitanX GPU 

• Mobile GPU: Jetson TK1 with NVIDIA



Layout of an EIE PE



Result: Speedup / Energy Efficiency



Result: Speedup



Scalability



Useful Computation / Load Balance



Load Balance



Design Space Exploration



Media Coverage

http://www.nextplatform.com/2015/12/08/emergent-chip-vastly-accelerates-deep-neural-networks/



Hardware for Deep Learning

PC                             Mobile              Intelligent Mobile

？

Computation Mobile  
Computation

Intelligent  
Mobile  

Computation



Conclusion

• We present EIE, an energy-efficient engine optimized to 
operate on compressed deep neural networks. 

• By leveraging sparsity in both the activations and the 
weights, EIE reduces the energy needed to compute a 
typical FC layer by 3,000×.  

• Three factors for energy saving:  
matrix is compressed by 35×;  
DRAM => SRAM: 120×;  
take advantage of sparse activation: 3×;



Thank you!
songhan@stanford.edu

mailto:songhan@stanford.edu

