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A few words about us

* Fourth year PhD with Prof. Bill Dally at Stanford.

* Research interest is computer architecture for deep
earning, to improve the energy efficiency of neural
networks running on mobile and embedded systems.

* Recent work on “Deep Compression” and “EIE: Efficient
Inference Engine” covered by TheNextPlatform.

* Professor at Stanford University and former chairman of CS
department, leads the Concurrent VLSI Architecture Group.

e Chief Scientist of NVIDIA.

* Member of the National Academy of Engineering, Fellow of
the American Academy of Arts & Sciences, Fellow of the
IEEE, Fellow of the ACM.

Bill Dally
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http://www.nextplatform.com/2015/12/08/emergent-chip-vastly-accelerates-deep-neural-networks/

This Talk:

 Deep Compression: A Deep Neural Network
Model Compression Pipeline.

 EIE Accelerator: Efficient Inference Engine
that Accelerates the Compressed Deep
Neural Network Model.
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Deep Learning: Next Wave of Al
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Applications
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The Problem:

If Running DNN on Mobile...

**  App developers suffers from the model size

—~

This item is over T00MB.

Microsoft Excel will not download
until you connect to Wi-Fi.

Cancel OK

“At Baidu, our #1 motivation for compressing networks is to bring down the size of the binary file.
As a mobile-first company, we frequently update various apps via different app stores. We've very
sensitive to the size of our binary files, and a feature that increases the binary size by 100MB
will receive much more scrutiny than one that increases it by 10MB.” —Andrew Ng
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The Problem:

If Running DNN on Mobile...

** Hardware engineer suffers from the model size
(embedded system, limited resource)

Relative Energy Cost

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000
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The Problem:

If Running DNN on the Cloud...

Network User
Delay Privacy

Intelligent but Inefficient

Stanford University



Solver 1: Deep Compression

Deep Neural Network Model Compression

Smaller Size Accuracy Speedup

Compress Mobile App no loss of accuracy make inference faster
Size by 35x-50x improved accuracy

Stanford University



Solve 2: EIE Accelerator

ASIC accelerator: EIE (Efficient Inference Engine)

Offline Real Time Low Power

No dependency on No network delay High energy efficiency
network connection high frame rate that preserves battery

Stanford University



Deep Compression

e AlexNet: 35x, 240MB => 6.9MB
« VGG16: 49%x 552MB => 11.3MB
* Both with no loss of accuracy on ImageNet12

* Weights fits on-chip SRAM, taking 120x less energy than DRAM

Stanford University



Compression Pipeline: Overview

original network pruning weight sharing
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1. Pruning

Pruning: less number of weights
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Pruning: Motivation

Age Number of Connections  Stage

at birth 50 Trillion newly formed

1 year old [1000 Trillion peak

10 year old | 500 Trillion pruned and stabilized

Table 1: The synapses pruning mechanism in human brain development

Trillion of synapses are generated in the human brain during the first few months of birth.

1 year old, peaked at 1000 trillion

Pruning begins to occur.

10 years old, a child has nearly 500 trillion synapses

This 'pruning’ mechanism removes redundant connections in the brain.

[1] Christopher A Walsh. Peter huttenlocher (1931-2013). Nature, 502(7470):172-172, 2013.
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Pruning: Result on 4 Covnets

Network Top-1 Error  Top-5 Error | Parameters gggp ression
LeNet-300-100 Ref 1.64% - 267K

LeNet-300-100 Pruned | 1.59% - 22K 12 x

LeNet-5 Ref 0.80% - 431K

LeNet-5 Pruned 0.77% - 36K 12 x
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 9 x

VGG16 Ref 31.50% 11.32% 138M

VGG16 Pruned 31.34% 10.88% 10.3M 13 %

Table 1: Network pruning can save 9 X to 13X parameters with no drop in predictive performance
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Pruning: AlexNet

-O-L2 regularization w/o retrain “A-L1 regularization w/o retrain
L1 regularization w/ retrain <~ L2 regularization w/ retrain
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AlexNet & VGGNet
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Mask Visualization
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S04/

Visualization of the first FC layer’s sparsity pattern of
Lenet-300-100. It has a banded structure repeated 28 times,
which correspond to the un-pruned parameters in the center of
the 1mages, since the digits are written in the center.
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Pruning also works well on RNN+LSTM
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[1] Thanks Shijian Tang pruning Neural Talk
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* Original: a basketball player in a white
uniform 1s playing with a ball

* Pruned 90%: a basketball player in a white
uniform 1s playing with a basketball

e Original : a brown dog 1s running through a
grassy field

* Pruned 90%: a brown dog is running
through a grassy area

e Original : a man 1s riding a surfboard on a
wave

 Pruned 90%: a man 1n a wetsuit 1s riding a
wave on a beach

e Original : a soccer player in red 1s running
in the field

* Pruned 95%: a man in a red shirt and
black and white black shirt 1s running
through a field

Stanford University




Speedup (FC layer)

® CPU Dense (Baseline) = CPU Pruned " GPU Dense = GPU Pruned "= mGPU Dense ®mGPU Pruned
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* Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV

« NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV

 NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV
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Energy Efficiency (FC layer)

¥ CPU Dense (Baseline) ®CPU Pruned " GPU Dense " GPUPruned " mGPU Dense ¥ mGPU Pruned
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* Intel Core i7 5930K: CPU socket and DRAM power are reported by pcm-power utility

* NVIDIA GeForce GTX Titan X: reported by nvidia-smi utility

* NVIDIA Tegra K1: measured the total power consumption with a power-meter, 15% AC
to DC conversion loss, 85% regulator efficiency and 15% power consumed by
peripheral components => 60% AP+DRAM power

Stanford University



2. Quantization and Weight Sharing

Quantization: less bits per weight
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Weight Sharing: Overview

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
-0.98 | 1.48 3 0 2 1
-1.08 cluster | 1 1 0 3
-0.91 -1.03 I:> 0 3 1 0
1.53 | 1.49 3 1 2 2
gradient

0.02 | .01  0.04 | -0.02

]

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)
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Finetune Centroids
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Quantization: Result

16 Million => 2/M4=16
e 8/5 bit quantization results in no accuracy |oss

e 8/4 bit quantization results in no top-5 accuracy 10ss,
0.1% top-1 accuracy loss

» 4/2 bit quantization results in =1.99% top-1 accuracy
loss, and-2.60% top-5 accuracy loss, not that bad-:

Stanford University



Accuracy ~ #Bits on 5 Conv Layer + 3 FC Layer
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Pruning and Quantization Works Well Together

“ top5, quantized only © top5, pruned + quantized 4 top5, quantized only < top5, pruned + quantized ~ top5, quantized only < top5, pruned + quantized
top1, quantized only < top1, pruned + quantized top1, quantized only © top1, pruned + quantized top1, quantized only < top1, pruned + quantized
85% PN P S P P a 85% ‘,;\,d«“**’ —n A P 85% — Ol il ey
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> , > >
j n_____-/'\. ...... Nl e 4 _‘ ------- _\ ------  © S l— L SR —— ]
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Number of bits per effective weight in all Number of bits per effective weight in all Number of bits per effective weight in

FC layers Conv layers all layers

Figure 7: Pruning doesn’t hurt quantization. Dashed: quantization on unpruned network. Solid:
quantization on pruned network; Accuracy begins to drop at the same number of quantization bits
whether or not the network has been pruned. Although pruning made the number of parameters less,
quantization still works well, or even better(3 bits case on the left figure) as in the unpruned network.
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3. Huffman Coding

Huffman Encoding
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Huffman Coding

Huffman code is a type of optimal prefix code that is commonly used for
loss-less data compression. It produces a variable-length code table for
encoding source symbol. The table is derived from the occurrence
probability for each symbol. As in other entropy encoding methods, more
common symbols are represented with fewer bits than less common
symbols, thus save the total space.

100000 220000

75000 165000
< 13
3 50000 a 110000
o (&)

25000 55000

0 0 ——
1 3 5§ 7 9 11 13 15 17 19 21 23 25 27 29 31 1 3 5§ 7 9 11 13 15 17 19 21 23 25 27 29 31
Weight Index (32 Effective Weights) Sparse Matrix Location Index (Max Diff is 32)

Figure 5: Distribution for weight (Left) and index (Right). The distribution is biased and can be compressed by
Huffman encoding

Stanford University



Deep Compression Result on 4 Convnets

Network Top-1 Error Top-5 Error | Parameters ggg PIEss
LeNet-300-100 Ref 1.64% . 1070 KB
LeNet-300-100 Compressed | 1.58% - 27 KB 40X
LeNet-5 Ref 0.80% . 1720 KB

LeNet-5 Compressed 0.74% . 44 KB 39 X
AlexNet Ref 42.78% 19.73% 240 MB

AlexNet Compressed 42.78% 19.70% 6.9 MB 35 X
VGG16 Ref 31.50% 11.32% 552 MB

VGG16 Compressed 31.17% 10.91% 11.3MB 49 X

Table 1: The compression pipeline can save 35X to 49X parameter storage with no drop in predictive perfor-
mance

Stanford University



Result: AlexNet

“O-Pruning + Quantization 2~ Pruning Only Quantization Only "~ 8VD
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-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

Accuracy Loss

2% 5% 8% 11% 14% 17% 20%
Compression Rate
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AlexNet: Breakdown

: Weigh Weight Index Index Compress Compress
Layer | #Weights gc)alghts% bits bits bits bits rate rate
P+Q) +H)  (P+Q) (H) (P+Q) (P+Q+H)

convl | 35K 84% 8 6.3 4 1.2 32.6% 20.53%
conv2 | 307K 38% 8 5.5 - 2.3 14.5% 9.43%
conv3 | 885K 35% 8 5.1 -4 2.6 13.1% 8.44%
conv4 | 663K 37% 8 5.2 = 2.5 14.1% 9.11%
convS | 442K 37% 8 5.6 4 2.5 14.0% 9.43%
fc6 38M 9% 5 3.9 4 3.2 3.0% 2.39%
fc7 17M 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 -4 -4 3.2 7.3% 5.85%
total 61M 11% 5.4 4 4 3.2 3.7% 2.88%

Table 4: Compression Statistics for Alexnet. P: pruning, Q:quantization, H:Huffman Encoding

Stanford University



Comparison with other Compression Methods

Network Top-1 Error Top-5 Error | Parameters gggpress
Baseline Caffemodel [21] 42.78% 19.73% 240MB 1x
Fastfood-32-AD [22] 41.93% - 131MB 2 X
Fastfood-16-AD [22] 42.90% - 64MB 3.7X
Collins & Kohli [23] 44.40% - 61MB 4 x

SVD [14] 44.02% 20.56% 55.2MB DX
Pruning [6] 42.77% 19.67% 27MB 9x
Pruning+Quantization 42.78% 19.70% 8.9MB 27X
Pruning+Quantization+Huffman | 42.78 % 19.70% 6.9MB 35 X

Table 6: Comparison with other model reduction methods on AlexNet. [23] reduced the parameters by 4 X
and with inferior accuracy. Deep Fried Convnets [22] worked on fully connected layers only and reduced the
parameters by less than 4 x. SVD save parameters but suffers from large accuracy loss as much as 2%. Network
pruning [6] reduced the parameters by 9x without accuracy loss but the compression rate is only one third of
this work. On other networks similar to AlexNet, [14] exploited linear structure of convnets and compressed the
network by 2.4x to 13.4x layer wise, but had significant accuracy loss: as much as 0.9% even compressing a
single layer. [15] experimented with vector quantization and compressed the network by 16 x —24 X, but again

incurred as much as 1% accuracy loss.

[14] EmilyLDenton,WojciechZaremba JoanBruna,YannLeCun,andRobFergus.Exploitinglinearstructure within convolutional networks for efficient evaluation. In Advances in Neural

Information Processing Systems, pages 1269—1277,2014.

[15] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115,2014.
[21] Yangqing Jia. Bvlc caffe model zoo. ZichaoYang MarcinMoczulski,MishaDenil NandodeFreitas,AlexSmola,LeSong,andZiyuWang.

[22] Deep fried convnets. arXiv preprint arXiv:1412.7149, 2014.

23] Maxwell D Collins and Pushmeet Kohli. Memory bounded deep convolutional networks. arXiv preprint arXiv:1412.1442.2014.
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Conclusion

Quantization: less bits per weight

Pruning: less number of weights P ~ Huffman Encoding
/ \
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« We have presented a method to compress neural networks without
affecting accuracy by finding the right connections and quantizing the
weights.

 Pruning the unimportant connections => quantizing the network and
enforce weight sharing => apply Huffman encoding.

 We highlight our experiments on ImageNet, and reduced the weight
storage by 35x, VGG16 by 49x, without loss of accuracy.

 Now weights can fit in cache
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Product: A Model Compression Tool for
Deep Learning Developers

 Easy Version:
v No training needed
v Fast
x 5X - 10x compression rate
x 1% loss of accuracy

 Advanced Version:
v 35x - 50x compression rate
v Nno loss of accuracy
x Training iIs needed
x Slow

Demo:
Pocket AlexNet

Stanford University



EIE: Efficient Inference Engine on
Compressed Deep Neural
Network

Song Han
CVA group, Stanford University
Jan 6, 2015
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ASIC Accelerator that Runs DNN on Mobile

SpMat

Acd Al

Ptr_Even Arithm Ptr_Odd

SpMat

Offline Real Time Low Power

No dependency on No network delay High energy efficiency
network connection high frame rate that preserves battery

Stanford University



Solution: Everything on Chip

® \\e present the sparse, indirectly indexed, weight shared MxV
accelerator.

e | arge DNN models fit on-chip SRAM, 120x energy savings.
® E|E exploits the sparsity of activations (30% non-zero).
® E|E works on compressed model (30x model reduction)

® Distributed both storage and computation across multiple PEs,
which achieves load balance and good scalability.

e Fvaluated EIE on a wide range of deep learning models,
including CNN for object detection, LSTM for natural language
processing and image captioning. We also compare EIE to
CPUs, GPUs, and other accelerators.

Stanford University



Distribute Storage and Processing
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Figure 2: Matrix W and vectors a and b are interleaved over
4 PEs. Elements of the same color are stored in the same PE.
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Inside each PE:

Compressed 4-bit 16-bit
DNN Model Virtual weight| Weight | Real weight

E::T;:vde‘f’n:i:xht Look-up | “ Prediction

I A—
m Index | . Result
Input Sl 4-bit Accum 16-bit u
Image Relative Index 3 \ Absolute Index
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Evaluation

1. Cycle-accurate C++ simulator. Two abstract methods: Propagate and
Update. Used for DSE and verification.

2. RTL 1n Verilog, verified its output result with the golden model in
Modelsim.

3. Synthesized EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT corner.

4. Placed and routed the PE using the Synopsys IC compiler (ICC). We
used Cacti to get SRAM area and energy numbers.

5. Annotated the toggle rate from the RTL simulation to the gate-level
netlist, which was dumped to switching activity interchange format
(SAIF), and estimated the power using Prime-Time PX.

Stanford University



Baseline and Benchmark

® CPU: Intel Core-i7 5930k
e GPU: NVIDIA TitanX GPU

e Mobile GPU: Jetson TK1 with NVIDIA

Table 3: Benchmark from state-of-the-art DNN models

Layer Size  Weight% Act% FLOP%| Description
9216,
Alex-6 4096 9% 35.1% 3% Compressed
y 4096, AlexNet [1] for
Alex-7 4096 9% 35.3% 3% large scale image
Alex-8 | 1000 25%  37.5% 10% | classification
VGG6 | z00¢ " 4% 183% 1% | Compressed
VGG-16 (3] for
4090 :
VGG-7 4096 4% 37.5% 2% large scale image
2096 classification and
VGG-8 1000’ 23% 41.1% 9% object detection
4096, Compressed
NT-We | oo~ 10% 100% 10% NeuralTalk [7]
600, with RNN and
NT-Wd 8791 11% 100% 11% [ STM for
1201, automatic
NTLSTM| 5400 10% 100% 11% image captioning

Stanford University



Layout of an EIE PE

Power Area
% %
(mW) (%) (pmz) (%)
SpMat Total 9.157 638,024
memory 5416 (59.15%) 3594786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
At 0 Act 1 register 1.026 (11.20%) 9,465 (1.48%)
. combinational 0.841 (9.18%) 8,946 (1.40%)
Ptr_Even  Arithm  Ptr_Odd filler cell 23961  (3.76%)
Act_queue 0.112  (1.23%) 7 .
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4955 (54.11%) 469412 (73.57%)
S p M at ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122  (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

- . . Table 2: The implementation results of one PE in EIE and
E;guress 7: Layout of one PE in EIE under TSMC 45nm pro- fhe Exeabiowi by componeit type (line 3-7), by modsile

(line 8-13). The critical path of EIE is 1.15ns

Stanford University



Result: Speedup / Energy Efficiency

& CPU Dense (Baseline) ® CPU Compressed . GPU Dense & GPU Compressed
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Result: Speedup

Table 4: Performance comparison between CPU, GPU, mobile GPU implementations and EIE.

Platform Batch | Matnx AlexNet VGGI6 NT-
Size | Type FC6 FC7 [ FC8 | FC6 FC7 [FC8 | We | Wd LSTM |
CPU 1 dense 75162 | 6187.1 | 11349 | 35022.8 | 53728 | 774.2 | 605.0 | 1361.4 | 470.5
(Core sparse 3066.5 | 12821 | 890.5 | 37743 | 545.1 | 7773 | 261.2 | 4374 | 260.0
17.50306) | 64 dense 3184 | I889 | 458 | 1056.0 | I883 | 457 | 287 | 69.0 | 288
sparse 14176 | 682.1 | 407.7 | 17803 | 2749 | 363.1 | II7.7 | 1764 | 1074
1 dense 541.5 2430 | 80.5 14678 | 2430 | 805 65 90.1 519
GPU sparse 1338 | 658 | 546 | 1670 | 398 | 480 | I7.7 | 4Ll 183
(Titan X) [, dense 198 80 59 536 89 59 32 |23 23
sparse 946 515 | 232 1215 | 244 | 220 | 109 [IL0 [ 9.0
1 dense 12437.2 | 5765.0 | 2252.1 | 35427.0 | 55443 | 2243.1 | 1316 | 2565.5 | 956.9
mGPU sparse 28793 | 12565 | 837.0 | 43772 | 6263 | 735.1 | 2406 | 5706 | 315
(TegraK1) [, dense 1663.6 | 2056.8 | 298.0 | 2001.4 | 2050.7 | 4839 | 878 | 9563 | 95.2
sparse 30039 | 13728 | 5767 | 80248 | 660.2 | 5441 | 2363 | I87.7 | 1865
EIE Theoretical Time | 28.1 11.7 8.9 28.1 7.9 7.3 52 13.0 6.5
Actual Time 30.3 12.2 9.9 344 8.7 84 3.0 13.9 7.5
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Scalability
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Figure 11: System scalability. The average efficiency of single PE finally decreases as the number of PEs increases. On some
very sparse layers, having more PEs initially increases the efficiency a bit.
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Useful Computation / Load Balance
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Figure 12: The number of padding zeros decreases as the number of PEs goes up, leading to less padding zeros and better
compute efficiency.
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Figure 13: Load efficiency is measured by the ratio of stalled cycles over total cycles in ALU. More PEs lead to worse load
imbalance accompanied with less load efficiency. This explains the sub-linear speedup at large number of PEs.
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Load Balance
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Figure 8: Load efficiency improves as FIFO size increases. When the size is larger than eight, the marginal gain quickly
diminishes. So we choose FIFO depth to be eight.
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Design Space Exploration
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Figure 9: Left: SRAM read energy and number of reads benchmarked on AlexNet. Right: Multiplying the two curves in the
left gives the total energy consumed by SRAM read.
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Figure 10: Prediction accuracy and multiplier energy with
different arithmetic precision.
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Media Coverage

NEXTPLATFORM

HOME COMPUTE STORE  CONNECT  CONTROL CODE  ANALYZE HPC  ENTERPRIS

EMERGENT CHIP VASTLY ACCELERATES DEEP NEURAL NETWORKS

December 8, 2015 Nicole Hemsoth

Stanford University PhD candidate, Song Han, who works
under advisor and networking pioneer, Dr. Bill Dally,
il responded in a most soft-spoken and thoughtful way to the
S : question of whether the coupled software and hardware
architecture he developed might change the world.

http://www.nextplatform.com/2015/12/08/emergent-chip-vastly-accelerates-deep-neural-networks/
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Hardware for Deep Learning
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Conclusion

« We present EIE, an energy-efficient engine optimized to
operate on compressed deep neural networks.

e By leveraging sparsity in both the activations and the
weights, EIE reduces the energy needed to compute a
typical FC layer by 3,000x.

* Three tfactors for energy saving:
matrix Is compressed by 35x;
DRAM => SRAM: 120x;

take advantage of sparse activation: 3x;
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Thank you!

songhan@stanford.edu
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