

Engineering in Cyber Resiliency: A Pragmatic* Approach

Bill Sanders

Donald Biggar Willett Professor of Engineering Head, Department of Electrical and Computer Engineering

* but not perfect

ECE ILLINOIS Department of Electrical and Computer Engineering

INFORMATIONTRUST INSTITUTE

Being Pragmatic: Separating Science Fantasy from Science Fact

"If there's one disadvantage to spending more than a quarter of a century in security, it's that you become hypersensitized to mangled terminology and fantasy passed off as current science"

David Harley, Senior Research Fellow, ESET

Said when speaking about *The Florentine Deception* by Carey Nachenberg.

The Challenge

Design for Resiliency

Trust Assessment

Cyber Security Facts (according to Sanders)

- Cyber systems are **complex**, and their complexity will only continue to increase.
- Absolute cyber security is unattainable.
- Cyber systems intended to be trustworthy must **operate through attacks.**
- Protect the best you can, but realize that perfect protection is impossible, so resiliency can only be achieved through tolerating attacks through online detection and response.
- Assessment of the "amount" of security that a particular resiliency approach provides is essential.
- Perfect cyber security is science fantasy, and perfection is the enemy of good.

THE CRITICAL NEED: Provide Assured Trustworthy System Operation in Hostile Environments

• Be Trustworthy

- A system which does what is supposed to do, and nothing else
- Availability, Security, Safety, ...
- Tolerate a Hostile Environment
 - Accidental Failures, Design Flaws, and Malicious Attacks
- Consider the cyber, physical, and social system aspects
- Provide Assurance through Assessment
 - Provide justification that the system will operated as expected
 - Choose among design alternatives to achieve greater trustworthiness.

I

0000

INFORMATIC

5

The ChallengeDesign for ResiliencyTrust AssessmentThe Path Forward

Engineering in Resiliency: Design and Architecture

The Challenge

Design for Resiliency

Trust Assessment

The Path Forward

The Challenge

Design for Resiliency

Trust Assessment

The Path Forward

0

INFORMATION

INSTITUTE

I

000

INFORMATI

I

I

INFORMAT

The Challenge

I

Design for Resiliency

Trust Assessment

The Path Forward

12

INFORMAT

Challenges in Providing Cyber Resiliency

- Adaptation inherently increases the attack surface of a system
- Monitoring is increasingly possible, but creates a data deluge that makes difficult to identify relevant attack indicators
- Monitors are corruptible, which makes knowledge about the cyber state of the system only partially trustworthy
- A world model is needed to reason about indicators, but this reasoning is fallible if an attacker can work outside the model
- Catastrophic failures are (hopefully) rare, but can have a huge impact. Predictions based on historical data are

The Challenge

y baich at reoping with rrane ements. The Path Forward

Example 1: E-commerce System with Accidental Failures (SRDS '05, DSN '06, IEEE Trans Dep/Sec '11 with AT&T Research)

- Fault models: fail-silent (crash), non fail-silent (zombie) faults
- Recovery Actions: restart component, reboot host.
- Individual component monitors: only detect crashes
- End-to-end path monitors: detect crashes and zombies but poor localization
- Recovery Cost: fraction of "lost" requests (i.e. user-perceived availability)

I

- What to use for remaining cost at the leaves of the tree?
 - Zero cost, heuristic cost, bound?

INFORMAT

Example 2: Recovery and Response Approach for Malicious Attacks (DSN'09, IEEE Trans. Par. & Dist. Sys 2014)

- RRE: a real-time automatic, scalable, adaptive and cost-sensitive intrusion response system
 - Accounts for planned adversarial behavior
 - Accounts for uncertainties in IDS alerts
- Models adversary behavior and responses using Attack-Response Tree (ART)
- Employs a game-theoretic response strategy against adversaries in a twoplayer Stackelberg game
- Developed distributed and hierarchical prototype implementation

Current Work Guided is by Notional Architecture

I

The Challenge

Trust Assessment

Design for Resiliency

The Path Forward

INFORMAT

World View Model Construction using CPTL (PRDC'15)

- Situational awareness is needed for resiliency
- CPTL models cyber, physical, and human system aspects
- Is a system state model that is:
 - represents heterogeneous types of data and the relations among them,
 - is updated at runtime
- CPTL can be used to:
 - exchange data among resiliency providing mechanisms
 - calculate metrics on system state

Concept Name	Icon	Role Name	Icon	
User	U	create	>	
Identity	$(\overline{\mathbf{I}})$	write	\rightarrow	
File	(F)	prints hasIdentity	> ~~~>	
Printer	(<u>P</u>)			
Feature Name		Icon		
timestamp, fileName, location, netid, name		Feature name=feature value		

The Path Forward

Diverse System Monitoring (PRDC'17)

Diverse System Monitoring

- Kobra is a kernel level monitor
 - Collects process behavior traces using kernel modules
 - Network operations, file operations, process communication
- The traces are fused by generating a complex-valued time signal
- The normal behavior profile is generated by learning a space using sparse representation dictionary learning

$$\mathbf{D}^* = \arg\min_{\mathbf{D}} \sum_{i=1}^{N} \min\left\{ ||\mathbf{D}x_i - y_i||^2 + \lambda ||x_i||_1 \right\}$$

 Anomaly detection uses the learned profile to detect actions that lie outside the space of known actions

Monitor Fusion Algorithms (HoTSoS'16)

Monitor Fusion

- Combine host-level authentication logs and network-level firewall logs
- Perform unsupervised cluster analysis
- Able to detect more intrusions than otherwise detected by each of the monitors individually
- Provide concise representation as a prioritized list of clusters

The Challenge

Monitor Fusion Algorithms (SRDS'16)

- Lateral Movement detection by fusing host-level process communication with network flow information
- Process communication used to infer network flow causation
 - Kobra collects the communication events and builds a process communication graph
 - Avoids the use of heuristics or signatures
- Hierarchical fusion of events results in a causation chain that describes lateral movement in the system
- Local inference of causation events allows for fusion without the need for a global clock

Response Selection and Actuation (GameSec'16)

Response Selection and Actuation

- Goal is to design an autonomous incident response engine
 - Uses game theory for decision making
 - Uses real data-sets (when available)
 - Can scale to large systems
- Account for the effects of response actions
- Account for the system evolution
- Account for the defender's observations and actions
- Make online decisions
- Hierarchical design for scalability

Engineering in Resiliency: Assessment

The Challenge

1

Design for Resiliency

Trust Assessment

The Path Forward

Trust Assessment Challenge

- Systems operate in adversarial environments
 - Adversaries seek to degrade system operation by affecting the confidentiality, integrity, and/or availability of the system information and services
 - "Secure" systems must be able to meet their operational objectives despite attack attempts by adversaries
- System security is not absolute
 - No real system is perfectly secure
 - Some systems are more secure than others
 - But how much more secure are they?

Quantifying Resiliency

- At design time
 - System architects make trade-off decisions to best meet all design criteria
 - Other design criteria can be quantified: performance, reliability, operating and maintenance costs, etc.
 - How can we quantify the security of different system designs?
- During system operation and maintenance
 - Modifying the system architecture can improve or worsen system security
 - How can we compare the security of different possible system configurations?

Model-based system-level resiliency evaluation

Practical Applications of Security Metrics

Organizational-level Metrics

Questions the CIO cannot answer:

- How much risk am I carrying?
- Am I better off now than I was this time last year?
- Am I spending the right amount of money on the right things?
- How do I compare to my peers?
- What risk transfer options do I have?

(From CRA, Four Grand Challenges in Trustworthy Computing, 2003)

A Question neither can answer:

Technical Metrics

- Questions the design engineer cannot answer:
- Is design A or B more secure (confidentially, integrity, availability, privacy)?
- Have I made the appropriate design trade off between timeliness, security, and cost?
- How will the system, as implemented, respond to a specific attack scenario?
- What is the most critical part of the system to test, from a security point of view?
- How do the technical metrics impact the organizational-level security metrics?

Contrasting Approaches

Typical Situation Today:

- Process:
 - Rely on a trusted analyst (wizard?) that examines situation, and gives advice based on experience, or
 - Form decision in a collective manner based on informal discussions among stakeholder experts
- Limitations:
 - No way to audit decision process
 - No quantifiable ranking of alternative options

Goal For Tomorrow:

- Usable tool set that enables diverse stakeholders to express
 - Multi-faceted aspects of model
 - Multiple objectives
- Way for diverse stake holders to express concerns and objectives in common terminology
- Quantifiable ranking of alternate security policies and architectures
- Auditable decision process

Trust Assessment

ADVISE Method Overview (DSN'10, MetriSec'10, QEST'11)

I

The Challenge

Design for Resiliency

Trust Assessment

The Path Forward ³¹

O INFORMATION

Adversary Editor

bistributionSystemWideAttacks				X
File Edit				
DistributionSystemWideAttacks				
Payoff: Weight_Payoff		Payoff: 1.0		
▲ Skills			*	
Name	Code Name	Proficiency	^ Add	
Recloser Radio Traffic Analysis	Recloser Radio Traffic Analysis and I	Proficienc	E	
Physical Sabotage Skill	PhysicalSabotageSkill	Proficienc	Kemove	
Backdoor SW Skill	BackdoorSWSkill	Proficienc		
SCADA Network Traffic Analysi	SCADANetworkTrafficAnalysisan	Proficienc		
Password Attack Skill	PasswordAttackSkill	Proficienc	T	
Initial Access			*	
Name	Code Name		Add	
Internet Access	InternetAccess			
Access to Engr Remote Access	AccesstoEngrRemoteAccessNetw		Remove	
Initial Knowledge			\$	
Name	Code Name		Add	
SS Protection Settings Knowled	SSProtectionSettingsKnowledge			Ξ
SCADA Protocol Knowledge	SCADAProtocolKnowledge		Remove	
-	2			
			*	
Name	Code Name	Payoff	Add	
Minor Service Disruption	MinorServiceDisruption	0		
 System-wide Service Disruption 	SystemwideServiceDisruption	0	Kemove	
 Backdoor SW Installed on Syste 	BackdoorSWInstalledonSystemwi	300		
 Backdoor SW Installed on SCA 	BackdoorSWInstalledonSCADALAN	600		
Local Service Disruption	LocalServiceDisruption	0	-	
Attack Execution Graph Adversary				
				_

The Challenge

1

Model Execution: the Attack Decision Cycle

- The adversary selects the most attractive available attack step based on his attack preferences.
- State transitions are determined by the outcome of the attack step chosen by the adversary.

The Challenge

Design for Resiliency

Trust Assessment

The Path Forward

Attack Speed Without Recloser Radios

Attack Speed With Recloser Radios

The Path Forward

The Challenge

I

Design for Resiliency

Trust Assessment

The Path Forward

The Path Forward

- Perfect security is science fantasy, and perfection is the enemy of good
- Resiliency mechanisms are needed to tolerate attacks, responding to provide a specified service despite partially successful attacks
- Assessment tools are needed at design time to choose between alternative resiliency mechanisms
- For the good of society, pragmatic approaches are needed to engineer resiliency into cyber systems for use in critical applications
- We're just at the beginning of the journey, and much work remains to be done