
Runway

Diego Ongaro
Lead Software Engineer, Compute Infrastructure

@ongardie
https://runway.systems

A new tool for distributed systems design



Outline

1. Why we need new tools for distributed systems design

2. Overview and demo of Runway

3. Building a Runway model



Distributed Systems Are Hard

● Concurrency and message delays

● Failures, failures during failures

● Many possible interleavings of events

● Little visibility, poor debugging environments



Raft Background / Difficult Bug

Raft: fault-tolerant consensus algorithm

Used in many examples in this talk

Quick summary:

1. Use majority voting to elect a leader
2. Leader replicates its log to followers

Difficult design bug:



Typical Approaches Find Design Issues Too Late

These are good techniques for implementation errors

● Localized: easy to fix

Too expensive for design errors

● May require large changes

● May cause unforeseen consequences

Let’s find the right design sooner...

Code reviews

Unit tests

System tests

Randomized tests, fuzzing, 
Jepsen

Benchmarks

Metrics

Dark launches

Bug reports



Communication:

● Build intuition quickly
● Unambiguous
● Reviewable: discuss major issues and 

consider alternatives

Design Phase

Evaluation:

● Simplicity
● Correctness
● Performance
● Availability

State of the art:

● Visualization (animation)
● Specification
● Model checking
● Simulation

Commonly used today:

To
ol

s
G

oa
ls



Visualization

Specification

Model checking

Simulation

A model is a representation of a system that captures its 
essential concepts and omits irrelevant details.

Design Tools Use System Models



A Tour of Runway



Runway Overview

Integrated into one tool: write one model, get many benefits

Specify, simulate, visualize, and check system models

model
(spec)

(error)
interaction

graphs, 
data

visualization
(animation)

randomized 
simulator

model
checker

execution
S2:recv

S3:proc

S1:send



Runway Demo
Too many bananas, elevators, and Raft



Runway Integration

Independent tools: create independent models

● Write similar models for different tools
● Change the design: revise them all

Runway: reuse the same model

● Lower cost, additional benefit ⇒ create models sooner
● More likely to find modeling bugs

TLA+

500 LOC

JS

300 LOC

Rust

550 LOC

pseudo

150 LOC

Specification, simulation, and model checking all benefit from visualization



Building a Runway Model



Developing a Model

Idealized steps:

1. Sketch view by hand
2. Define types, state variables
3. Create view based on sketch
4. Write invariants
5. Write transition rules

visualization 
aids with 

debugging

specification

view

Tip: set convenient starting state



● Specification is code

● Define starting state, transition rules, and invariants

○ Labeled Transition System

● Rules encode behavior + failures

● Applying a rule is atomic (one at a time)

● A rule is active if applying it would change the state

● If multiple rules are active, system decides

○ Simulator: random choice

○ Model checker: walk the tree

Runway’s Specification Language



Example: Too Many Bananas (1)
Type and variable declarations, invariant

type-safe variant: 
can’t access unless 
ReturningFromStore



Example: Too Many Bananas (2)
Transition rule

no state 
changed: 

inactive until 
readset changes



It’s About Time

Developers: each server tries to approximate “the global clock”

Physicists: Ha! Blah blah blah, blah, blah! Blah blah blah blah. Blah!

Want some safety properties to hold even if clocks misbehave

Need time to describe availability and performance

Runway’s current approach: global clock, conditionally

server.timeoutAt <= clocktrue



Summary

● Let’s apply tools to help us design distributed systems

● Modeling helps focus our attention on concepts, leaving out unimportant details

● Runway combines spec, model checking, simulation, and interactive visualization

● Go view the models, build your own, and help develop Runway



solve design problems in the design phase
https://runway.systems


