TIME TRAVELING HARDWARE A
SOFTWARE SYSTEMS -

o X|angya® 0 Srlnl Devadas
—~ CSAIL MIT »

FOR FIFTY YEARS,
WE HAVE RIDDEN MOORE’S LAW

= printing press for the currency of performance

TECHNOLOGY SCALING

10,000,000

1,000,000 & Transistors x 1000
100,000 ¥ Clock frequency (MHz)

X A Power (W) W“
1,000 ® Cores = I

o Attt

2A A, T

. v

1970 1975 1980 1985 1990 1995 2000 2005 2010

Each generation of Moore's law doubles the number of
transistors but clock frequency has stopped increasing.

TECHNOLOGY SCALING
10,000,000 m
1,000,000 ¢ Transistors x 1000 S£ 2
100,000 ¥ Clock frequency (MHz) :
10,000 A Power (W)
1,000

100
10

1970 1975 1980 1985 1990 1995 2000 2005 2010

To increase performance, need to exploit parallelism.

DIFFERENT KINDS OF
PARALLELISM - 1

Instruction Level

Transaction Level

a=b+c
d=e+f
g=d+Db

Read A Read A
Read B Read D
Compute C Compute E

Read C
Read E
Compute F

DIFFERENT KINDS OF
PARALLELISM - 2

Thread Level Task Level

. O] Search(“image”)
A | X IB = C m

Different thread computes
each entry of product matrix C

DIFFERENT KINDS OF
PARALLELISM - 3

Thread Level User Level

. O] Search(“image”)
A X B = C
Lookup(“data”)

Different thread computes Query(“record”)
each entry of product matrix C

DEPENDENCY DESTROYS
PARALLELISM

fori=1ton
a[b[i]] = (a[b[i - 1]] + b[i]) / c[i]

DIFFERENT KINDS OF

DEPENDENCY
WAW:
Read A No Write A Semantics

Read A dependency! Write A decide
order
WAR:

Write A RAW: Read A We have
Read needs - flexibilit

Read A [ew value Write A y

here!

DEPENDENCE IS ACROSS TIME,
BUuT WHAT IS TIME?

* Time can be physical time

* Time could correspond to logical
timestamps assigned to instructions

 Time could be a combination of the above

- Time is a definition of ordering

WAR DEPENDENCE

Initially A= 10
Thread O Thread 1
Logical erte A A=1 3
order Physical Time

Read A LQrden L Local copy of A= 10

11

WHAT IS CORRECTNESS?

* We define correctness of a parallel
program based on its outputs in relation to
the program run sequentially

SEQUENTIAL CONSISTENCY

Can we exploit
this freedom in

Global Memory Order correct
A B CD execution to
A C B D avoid
C D AB dependency”?
C B-A_D

AVOIDING DEPENDENCY
ACROSS THE STACK

L
O(;]ro Circuit

Multicore
Processor

Multicore
Database

Distributed
Database

oo Distributed
¢ » Shared Memory

Efficient atomic instructions

Tardis coherence protocol

TicToc concurrency control
with Andy Pavlo and Daniel Sanchez

Transaction processing with
fault tolerance

SHARED MEMORY SYSTEMS
Cache Concurrency
Coherence Control
~—_—

e

Multi-core OLTP
Processor Database

DIRECTORY-BASED COHERENCE
PEN PEIR P EE
PEN PNl PHE
PEN PHEE PHNE

« Data replicated and cached locally for access

* Uncached data copied to local cache, writes
Invalidate data copies

16

CACHE COHERENCE SCALABILITY

250%
200% /

Read A ReadA Write A

NS

Invalidation

150%

100%

50% -

Storage Overhead

0% 9

16 64 256 1024 A O(N) Sharer List

Core Count

| EASE-BASED COHERENCE

Program
Timestamp | I
(pts) |
|

#
Timest Timest ' 3
Im((\?vsisa)mp Im?r?S?mp | 5 6 7 LogicalMme
Timestamp

Ld(A) Ld(A) Ld(A)

* Aread gets a lease on a cacheline

* Lease renewal after lease expires
* A store can only commit after leases expire
e Tardis: logical leases

LOGICAL TIMESTAMP

Invalidation <—3 Physical Time Order
Tardis < Logical Time Order

(No Invalidation) (concept borrowed from database)

Old Version New Version | _
logical time

TIMESTAMP MANAGEMENT
[core | pis=5 | Lo S L —

% Write Timestamp (wts)

Data created at wis

state wits rts Read Timestamp (rts)
Data valid from wits to rts
A [S[0][10]

e N

Shared LLC wts rts Logical Time

20

TwoO-CORE EXAMPLE

Core 0 Core 1
@ store A
@) load B

Core 0 _Pts=0

Cache

€ store B
O load A
© load B

physical
time

21

STOREA @ CORE O

Core 0
@ store A
@) load B

© load B

Write at pts = 1

Core 1

€ store B
O load A

22

LOAD B @ CORE O

A owner:0

B [sloln

Core 0 Core 1
@ store A
¢ load B
€ store B
O load A
© load B

Reserve rts to pts + lease = 11

23

STORE B @ CORE 1

Core 0 Core 1
@ store A
@) load B
€ storeB
O load A
© load B

Exclusive ownership returned
No invalidation

24

Two VERSIONS COEXIST

Core 0 Core 1
@ store A
@) load B
€ storeB
O load A
© load B

A .
B Core 1 traveled ahead in time

Versions ordered in logical time

25

LOAD A @ CORE 1

Core 0 Core 1
@ store A
@) load B
€ store B
O load A

%) sl

Write back request to Core O
Downgrade from M to S
Reserve rts to pts + lease = 22

26

LOAD B @ CORE O

Core 0 Core 1
@ store A
@) load B

. . € store B
physical time O load A
® load B

logical timestamp

A [Mowero

B 6 >phyS|caI e @ <Ioglcal 6

time time

global memory order # physical time order

27

SUMMARY OF EXAMPLE

Directory Tardis
Core 0 Core 1 Core 0 Core 1
store A RAW store A
oad B Q\\V)VAR 024 B N
\x, store B . sy store B
W load A \4 /{Hoa‘ﬁ A
load B PhtYS'CE" load B~ WAR
ime

physical time order physical + logical time order

PHYSIOLOGICAL TIME
Tardis Global Memory Order

Core 0 Core 1
stors,A (1)

o .
IoadlB (1) store B (12) + i

load A (12) Physical Time Logical Time Physiological Time

S—

load B (1)
X<p Y=X< Yor(X= Yand X <yY)

Thm: Tardis obeys Sequential Consistency

TARDIS PROS AND CONS

o

I

Scalability @) Lease Renew

Speculative Read

No Invalidation, ‘Timestamp Size
Multicast or Timestamp Compression

Broadcast @) Time Stands Stil

Livelock Avoidance »

EVALUATION

Storage overhead per cacheline (N cores)

Directory: N Dbits per cacheline
Tardis: Max(Const, log(N)) bits per cacheline

250%
200% + =*=Directory ﬁ
150% — <“®=Tardis
100% /
50% ::
0% . . ;

16 64 256 1024

Normalized Speedup

SPEEDUP

Graphite Multi-core Simulator (64 cores)
B DIRECTORY E TARDIS M TARDIS AT 256 CORES

N
w

N
)

=
=

[HEY
|

0.9 -
T ECELIOIEITEFTIEIL LSO XSGR SO
ST LSS (P ISP FTELETEL S EE ¢
FFFTFS T TILFES LS
& o F W

32

NETWORK TRAFFIC

™ TARDIS AT 256 CORES

“ DIRECTORY ™ TARDIS

yjel] pazijewionN

33

Network
Traffic

Storage
Overhead

Snoopy Coherence
Directory Coherence
Optimized Directory
TARDIS

High Performance
Complexity Degradation

34

CONCURRENCY CONTROL

z EH =z E
o = — =

s 9 s
NUH FALUE
& o o

O
O

Serializability

BEGIN
S
I!!ll!
BEGIN
S
I!!ll!

N\

N\

BEGIN
COMMIT
BEGIN
COMMIT
BEGIN
COMMIT
BEGI
COMMIT

Results should
correspond to
some serial order
of atomic

execution .

CONCURRENCY CONTROL

O

Results should

Can’t Have This correspond to
some serial order
of atomic

execution

z = = =
o = — =

s 9 s
NUH FALUE
& o o

BEGIN
S
COMMIT
BEGIN
S
COMMIT

IT

BEGIN
BEGIN
COMMIT
BEGIN
COMMIT
BEGIN
COMMIT

36

BOTTLENECK 1: TIMESTAMP

ALLOCATION

 Centralized Allocator

— Timestamp allocation is
a scalability bottleneck

« Synchronized Clock

— Clock skew causes
unnecessary aborts

Throughput

Thread Count

T/O 2PL

25
£ 20 =
C
515
=
2 10
25

A s
O 1 T T T
20 40 60

80

BOTTLENECK 2: STATIC
ASSIGNMENT

* Timestamps assigned
before a transaction
starts

» Suboptimal assignment
leads to unnecessary
aborts.

T1@ts=

1

T2@ts=2

r

J2@ts=

T1@ts=2

~

1

J

> Time

BEGIN
COMMIT

g

BEGIN
|ABORT
w

(0/e]

—

KEY IDEA: DATA DRIVEN
TIMESTAMP MANAGEMENT

Traditional T/O TicToc

Acquire timestamp (TS) 1. Access tuples and remember

Determine tuple visibility using their timestamp info.

TS 2. Compute commit timestamp
(CommitTS)

Timestamp Allocation Q No Timestamp Allocation

Static Timestamp Assignment Q Dynamic Timestamp Assignment

TiICTOC TRANSACTION
EXECUTION

READ VALIDATION WRITE
PHASE PHASE PHASE

COMMIT

Read & Write Tuples e Compute CommitTS » Update Database
Execute Transaction e Decide Commit/Abort

wis : last data write @ wts

rts - last data read @ rts } data valid between wts and rts

Tuple Format [L 52

(Write Timestamp) (Read Timestamp)
40

TicToc EXAMPLE

! 1 Z 3 4 Logical Time
: : , : : S
Tuple A i i i Transaction 1 Transaction 2
| | : @ load A © load A
epiete | | : @ store B O load B
i Database States i © commit? O commit?

|

Transaction Local States

T1

12

LOAD A FROM T1

0 L 2 3 4 Logical Time
I I I)
Tuple A Transaction 1 Transaction 2
@ load A ©® loadA
Tuple B @ store B O loadB
© commit? O commit?

T1 Load a snapshot of tuple A

- Data, wts and rts
T2

e e e

LOAD A FROM T2

0 L 2 3 4 Logical Time
I I I)
Tuple A Transaction 1 Transaction 2
@ load A (2 JGELYY
Tuple B @ store B O loadB
© commit? O commit?

Load a snapshot of tuple A
- Data, wts and rts

e e e

STORE B FROM T1

0 L 2 3 4 Logical Time
T T T t >
|
Tuple A i Transaction 1 Transaction 2
! @ load A ©® loadA
Tuple B : © store B O load B
E © commit? O commit?

Store B to local write set

i e s = = = = — — — —— 7
|
|
|
|
L
|
|
|
|

LOAD B FROM T2

0 L 2 3 4 Logical Time
T T T t >
|
Tuple A i Transaction 1 Transaction 2
! @ load A ©® loadA
Tuple B : © store B O loadB
E © commit? O commit?

Load a snapshot of tuple B
! - Data, wts and rts

i e s = = = = — — — —— 7
|
|
|
|
L
|
|
|
|

CoOMMIT PHASE OF T1

0 L 2 3 4 Logical Time
T t >

|

Tuple A i Transaction 1 Transaction 2
! @ load A ©® loadA

Tuple B : © store B O load B
: © commit? O commit?
|

Compute CommitTS

Write Set:

tuple.rts+1 < CommitTs

Read Set:

tuple.wts < CommitTs < tuple.rts

i e s = = = = — — — —— 7
|
|
|
|
L
|
|
|
|

|

CoOMMIT PHASE OF T1

0 L 2 3 4 Logical Time
T t >

|

Tuple A i Transaction 1 Transaction 2
! @ load A ©® loadA

Tuple B : © store B O load B
: © commit? O commit?
|

rts extension on tuple A

i e s = = = = — — — —— 7
|
|
|
|
L
|
|
|
|

CoOMMIT PHASE OF T1

0 1 2 3 4 Logical Time
: —>
i Transaction 1 Transaction 2
: © loadA ® loadA
; @ store B O loadB
E @ commit? @ commit?

Copy tuple B from write
' set to database

i e s = = = = — — — —— 7
|
|
|
|
L
|
|
|
|

COMMIT PHASE OF T2

0 L 2 3 4 Logical Time
T T T t $ >
Tuple A i i Transaction 1 Transaction 2
! ! © load A © loadA
Tuple B : ; © store B O load B
: : : : : © commit? O commit?
______ | [P U [N S
: T1 commits [: .
T1 . : . Compute CommitTS for T2
- ' . Find consistent read time

for T2 (no writes in T2)

FINAL STATE

0 L 4 Loglcal Time
' ' ' i
Tuple A i Transaction 1 Transaction 2
! © load A © loadA
Tuple B : @ store B O load B
i © commit? O commit?

T1

XN 1 <,pysical TXN 2

e s = = — — — - ————— 7
|
|
|
|
L
|
|
|
|

: : time
5 T2 commits : :
@ TS=0 ; ; Txn 2 < ![pgical Txn 1
ime

Thm: Serializability = All operations valid at CommitTS

EXPERIMENTAL SETUP

 DBx1000: Main Memory DBMS
— No logging
— No B-tree (hash indexing)

* Concurrency Control Algorithms
— MVCC: HEKATON (Microsoft)
— OCC: SILO (Harvard/MIT)
— 2PL: DL_DETECT, NO_WAIT

e 10 GB YCSB Benchmark

EVALUATION

=®-TICTOC =#=HEKATON ==DL DETECT =*=NO_WAIT =¢=SILO

YCSB -- Medium Contention YCSB -- High Contention
4 1
0.8
533 52 06
< c .
£ 35 £ 3
o .5 3 E 0.4
s 1° £S5 02 -
O £ 0 e —
0O 10 20 30 40 50 60 70 80 0O 10 20 30 40 50 60 70 80

Thread Count Thread Count

52

TicToc DISCUSSION

Thm: Serializability = All ops valid at CommitTS

ransactions may

have same CommitTS glzggg TT oo aioc
E 008 :Ilj/:izmm
Logical timestamp) 4958
" . . g 2000
growing rate indicates s *, .=

Talal=Yd=1ali para”e”gm 0 2000 4000 6000 8000 10000

of Committed Txns

PHYSIOLOGICAL TIME
ACROSS THE STACK

U2 oo

Ar®_ Ciroutt _ Efficient atomic instructions
Multicore _
Processor Tardis coherence protocol
Multicore
Database TicToc concurrency control
Distributed
Database Distributed TicToc

mé» Distributed Transaction processing with

& o oShared Memory fault tolerance

ATOMIC INSTRUCTION (LR/SC)

 ABA Problem
* Detect ABA using timestamp (wts)

Core O Core 1
LR(X); #x=A =

TARDIS CACHE COHERENCE

« Simple: No Invalidation

« Scalable:
— O(log N) storage
— No Broadcast, No Multicast
— No Clock Synchronization

« Support Relaxed Consistency Models

T1000: PRoPOSED 1000-CORE
SHARED MEMORY PROCESSOR

TicToc CONCURRENCY CONTROL

* Data Driven Timestamp Management
* No Central Timestamp Allocation

* Dynamic Timestamp Assignment

DISTRIBUTED TICTOC

* Data Driven Timestamp Management
« Efficient Two-Phase Commit Protocol

« Support Local Caching of Remote Data

FAULT TOLERANT
DISTRIBUTED SHARED MEMORY

* Transactional Programming Model

 Distributed Command Logging

* Dynamic Dependency Tracking Among
Transactions (WAR dependency can be ignored)

~ TIME TRAVELING TO, ELIMINATE. -

b Xlangya@ ~~ Srlnl Devadas
o~ CSAIL MIT ¥

