
Stuart Oberman | October 2017

NVIDIA GPU COMPUTING: A JOURNEY 
FROM PC GAMING TO DEEP LEARNING
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NVIDIA ACCELERATED COMPUTING

ENTERPRISE AUTOGAMING DATA CENTERPRO VISUALIZATION
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GEFORCE: PC Gaming

200M GeForce gamers worldwide

Most advanced technology

Gaming ecosystem: More than just chips

Amazing experiences & imagery
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NINTENDO SWITCH: POWERED BY NVIDIA TEGRA
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GEFORCE NOW: 

AMAZING GAMES 
ANYWHERE

AAA titles delivered at 1080p 
60fps

Streamed to SHIELD family of 
devices

Streaming to Mac (beta)

https://www.nvidia.com/en-
us/geforce/products/geforce-
now/mac-pc/
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GPU COMPUTING

Seismic Imaging
Reverse Time Migration

14x speed up

Automotive Design
Computational Fluid Dynamics

Product Development
Finite Difference Time Domain

Options Pricing
Monte Carlo

20x speed up

Weather Forecasting
Atmospheric Physics

Drug Design
Molecular Dynamics

15x speed up

Medical Imaging
Computed Tomography

30-100x speed up

Astrophysics
n-body



7

GPU: 2017
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21B transistors
815 mm2

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2

300 GB/s NVLink

2017: TESLA VOLTA V100

*full GV100 chip contains 84 SMs
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V100 SPECIFICATIONS
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HOW DID WE GET HERE?
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NVIDIA GPUS: 1999 TO NOW

https://youtu.be/I25dLTIPREA

https://youtu.be/I25dLTIPREA
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SOUL OF THE GRAPHICS PROCESSING UNIT

• Accelerate computationally-intensive applications

• NVIDIA introduced GPU in 1999

• A single chip processor to accelerate PC gaming and 3D graphics

• Goal: approach the image quality of movie studio offline rendering farms, but in 
real-time

• Instead of hours per frame, > 60 frames per second

• Millions of pixels per frame can all be operated on in parallel

• 3D graphics is often termed embarrassingly parallel

• Use large arrays of floating point units to exploit wide and deep parallelism

GPU: Changes Everything
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CLASSIC GEFORCE GPUS
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GEFORCE 6 AND 7 SERIES

• Example: GeForce 7900 GTX

• 278M transistors

• 650MHz pipeline clock

• 196mm2 in 90nm

• >300 GFLOPS peak, single-precision

2004-2006
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THE LIFE OF A TRIANGLE IN A GPU
Classic Edition
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Vertex Processing

Primitive Assembly, Setup 

Rasterize & Zcull

Pixel Shader

Register Combiners

Pixel Engines (ROP)

process commands

convert to FP

transform vertices 

to screen-space

generate per-

triangle equations

generate pixels, delete pixels 

that cannot be seen

determine the colors, transparencies 

and depth of the pixel

do final hidden surface test, blend 

and write out color and new depth
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NUMERIC REPRESENTATIONS IN A GPU

• Fixed point formats

• u8, s8, u16, s16, s3.8, s5.10, ...

• Floating point formats

• fp16, fp24, fp32, ...

• Tradeoff of dynamic range vs. precision

• Block floating point formats

• Treat multiple operands as having a common exponent

• Allows a tradeoff in dynamic range vs storage and computation
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INSIDE THE 7900GTX GPU

L2 Tex

Cull / Clip / Setup

Shader Instruction Dispatch

Fragment Crossbar

Memory

Partition

Memory

Partition

Memory

Partition

Memory

Partition

Z-Cull

DRAM(s) DRAM(s) DRAM(s) DRAM(s)

Host / FW / VTF vertex fetch engine

8 vertex shaders

conversion to pixels

24 pixel shaders

redistribute pixels

16 pixel engines

4 independent 64-bit memory partitions
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G80: REDEFINED THE GPU
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G80

• G80 first GPU with a unified shader processor architecture

• Introduced the SM: Streaming Multiprocessor

• Array of simple streaming processor cores: SPs or CUDA cores

• All shader stages use the same instruction set

• All shader stages execute on the same units

• Permits better sharing of SM hardware resources

• Recognized that building dedicated units often results in under-utilization due to 
the application workload

GeForce 8800 released 2006
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G80 FEATURES

• 681M transistors

• 470mm2 in 90nm

• First to support Microsoft DirectX10 API

• Invested a little extra (epsilon) HW in SM to also support general purpose 
throughput computing

• Beginning of CUDA everywhere

• SM functional units designed to run at 2x frequency, half the number of units

• 576 GFLOPs @ 1.5GHz , IEEE 754 fp32 FADD and FMUL

• 155W
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BEGINNING OF GPU COMPUTING

• Latency Oriented

• Fewer, bigger cores with out-of-order, speculative execution

• Big caches optimized for latency

• Math units are small part of the die

• Throughput Oriented

• Lots of simple compute cores and hardware scheduling

• Big register files. Caches optimized for bandwidth.

• Math units are most of the die

Throughput Computing
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CUDA

C++ for throughput computers

On-chip memory management

Asynchronous, parallel API

Programmability makes it possible
to innovate

Most successful environment for throughput computing

New layer type? No problem.
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G80 ARCHITECTURE
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FROM FERMI TO PASCAL
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FERMI GF100

• 3B transistors

• 529 mm2 in 40nm

• 1150 MHz SM clock

• 3rd generation SM, each with configurable L1/shared 
memory

• IEEE 754-2008 FMA 

• 1030 GFLOPS fp32, 515 GFLOPS fp64

• 247W

Tesla C2070 released 2011
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KEPLER GK110

• 7.1B transistors

• 550 mm2 in 28nm

• Intense focus on power efficiency, operating at lower 
frequency

• 2880 CUDA cores at 810 MHz

• Tradeoff of area efficiency vs. power efficiency

• 4.3 TFLOPS fp32, 1.4 TFLOPS fp64

• 235W

Tesla K40 released 2013
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Oak Ridge National Laboratory

TITAN SUPERCOMPUTER
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PASCAL GP100

• 15.3B transistors

• 610 mm2 in 16ff

• 10.6 TFLOPS fp32, 5.3 TFLOPS fp64

• 21 TFLOPS fp16 for Deep Learning training and 
inference acceleration

• New high-bandwidth NVLink GPU interconnect

• HBM2 stacked memory

• 300W

released 2016
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MAJOR ADVANCES IN PASCAL
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GEFORCE GTX 1080TI

https://www.nvidia.com/en-us/geforce/products/10series/geforce-
gtx-1080-ti/

https://youtu.be/2c2vN736V60
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FINAL FANTASY XV PREVIEW DEMO WITH 
GEFORCE GTX 1080TI

https://www.geforce.com/whats-new/articles/final-fantasy-xv-windows-edition-4k-
trailer-nvidia-gameworks-enhancements

https://youtu.be/h0o3fctwXw0

https://www.geforce.com/whats-new/articles/final-fantasy-xv-windows-edition-4k-trailer-nvidia-gameworks-enhancements
https://youtu.be/h0o3fctwXw0
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2017: VOLTA
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21B transistors
815 mm2 in 16ff

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2

300 GB/s NVLink

TESLA V100: 2017

*full GV100 chip contains 84 SMs
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TESLA V100

The Fastest and Most Productive GPU for Deep Learning and HPC

More V100 Features: 2x L2 atomics, int8, new memory model, copy engine page migration, 
MPS acceleration, and more …

Volta Architecture

Most Productive GPU

Tensor Core

120 Programmable 

TFLOPS Deep Learning

Independent Thread 

Scheduling

New Algorithms

New SM Core

Performance & 

Programmability

Improved NVLink & 

HBM2

Efficient Bandwidth

TEX

Sub-
Core

L1 D$ & SMEM

Sub-
Core

Sub-
Core

Sub-
Core

L1 I$
SM
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P100 V100 Ratio

DL Training 10 TFLOPS 120 TFLOPS 12x

DL Inferencing 21 TFLOPS 120 TFLOPS 6x

FP64/FP32 5/10 TFLOPS 7.5/15 TFLOPS 1.5x

HBM2 Bandwidth 720 GB/s 900 GB/s 1.2x

STREAM Triad Perf 557 GB/s 855 GB/s 1.5x

NVLink Bandwidth 160 GB/s 300 GB/s 1.9x

L2 Cache 4 MB 6 MB 1.5x

L1 Caches 1.3 MB 10 MB 7.7x

GPU PERFORMANCE COMPARISON
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TENSOR CORE

CUDA TensorOp instructions & data formats 

4x4 matrix processing array 

D[FP32] = A[FP16] * B[FP16] + C[FP32]

Optimized for deep learning

Activation Inputs Weights Inputs Output Results
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TENSOR CORE
Mixed Precision Matrix Math
4x4 matrices

D = AB + C

D = 

FP16 or FP32 FP16 FP16 FP16 or FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3
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VOLTA TENSOR OPERATION

FP16

storage/input

Full precision

product

Sum with

FP32

accumulator

Convert to

FP32 result

F16

F16

× +

Also supports FP16 accumulator mode for inferencing

F32

F32

more products
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NVLINK – PERFORMANCE AND POWER 

Bandwidth

25Gbps signaling

6 NVLinks for GV100

1.9 x Bandwidth improvement over GP100

Coherence

Latency sensitive CPU caches GMEM

Fast access in local cache hierarchy

Probe filter in GPU

Power Savings Reduce number of active lanes for lightly loaded link
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NVLINK NODES

DL  – HYBRID CUBE MESH – DGX-1 w/ Volta

HPC – P9 CORAL NODE – SUMMIT

V100 V100 V100 V100

V100 V100 V100 V100

V100 V100 V100

V100 V100 V100

P9

P9
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NARROWING THE SHARED MEMORY GAP
with the GV100 L1 cache

Pascal Volta

Cache: vs shared

• Easier to use

• 90%+ as good

Shared: vs cache

• Faster atomics

• More banks

• More predictable

Average 
Shared 
Memory 
Benefit

70%

93%

Directed testing: shared in global
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GPU COMPUTING AND DEEP LEARNING



46

TWO FORCES DRIVING 
THE FUTURE OF COMPUTING

The Big Bang of Deep Learning

1980 1990 2000 2010 2020

Original data up to the year 2010 collected and plotted by M. Horowitz, 

F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year

40 Years of Microprocessor Trend Data

Transistors

(thousands)
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RISE OF NVIDIA GPU COMPUTING

The Big Bang of Deep Learning

1980 1990 2000 2010 2020

GPU-Computing perf

1.5X per year 1000X

by 2025

Original data up to the year 2010 collected and plotted by M. Horowitz, 

F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year

40 Years of Microprocessor Trend Data
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DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification
Speech Recognition

Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDIA & ENTERTAINMENT

Video Captioning
Video Search

Real Time Translation

AUTONOMOUS MACHINES

Pedestrian Detection
Lane Tracking

Recognize Traffic Sign

SECURITY & DEFENSE

Face Detection
Video Surveillance
Satellite Imagery

MEDICINE & BIOLOGY

Cancer Cell Detection
Diabetic Grading
Drug Discovery
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DEEP NEURAL NETWORK

…..

I0

I1

I2

In

w0

w1

w2

wn

∑

…
..
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ANATOMY OF A FULLY CONNECTED LAYER

Each neuron calculates a dot product, M in a layer

𝑥1 = 𝑔 𝒗𝑥1 ∗ 𝒛

Lots of dot products
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COMBINE THE DOT PRODUCTS

Each neuron calculates a dot product, M in a layer

𝑥1 = 𝑔 𝒗𝑥1 ∗ 𝒛

What if we assemble the weights as [M, K] matrix?

Matrix-vector multiplication (GEMV)

Unfortunately …

M*K+2*K elements load/store

M*K FMA math operations

This is memory bandwidth limited!

What if we assemble the weights into a matrix?
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BATCH TO GET MATRIX MULTIPLICATION

Can we turn this into a GEMM?

“Batching”: process several inputs at once

Input is now a matrix, not a vector

Weight matrix remains the same

1 <= N <= 128 is common

Making the problem math limited
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GPU DEEP LEARNING —

A NEW COMPUTING MODEL
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AI IMPROVING AT AMAZING RATES

IMAGENET ACCURACY
SPEECH RECOGNITION 

ACCURACY
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AI BREAKTHROUGHS
Recent Breakthroughs

“Superhuman” Image 
Recognition

Atari Games

AlphaGo Rivals World 
Champion

Conversational Speech 
Recognition

Lip Reading

2015 2016 2017
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MODEL COMPLEXITY IS EXPLODING

2016 — Baidu Deep Speech 22015 — Microsoft ResNet 2017 — Google NMT

105 ExaFLOPS
8.7 Billion Parameters

20 ExaFLOPS
300 Million Parameters

7 ExaFLOPS
60 Million Parameters
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NVIDIA DNN ACCELERATION
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MANAGE TRAIN DEPLOY

MANAGE / 
AUGMENT DATA 

CENTER
AUTOMOTIVEEMBEDDED

TRAINTEST

DIGITS

PROTOTXT

TensorRT

A COMPLETE DEEP LEARNING PLATFORM
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DNN TRAINING
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NVIDIA DGX SYSTEMS

https://www.nvidia.com/en-us/data-center/dgx-systems/

https://youtu.be/8xYz46h3MJ0

Built for Leading AI Research

https://www.nvidia.com/en-us/data-center/dgx-systems/
https://youtu.be/8xYz46h3MJ0
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NVIDIA DGX STATION 
PERSONAL DGX

480 Tensor TFLOPS |  4x Tesla V100 16GB 

NVLink Fully Connected  |  3x DisplayPort  

1500W  |  Water Cooled
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NVIDIA DGX STATION 
PERSONAL DGX

480 Tensor TFLOPS |  4x Tesla V100 16GB 

NVLink Fully Connected  |  3x DisplayPort  

1500W  |  Water Cooled

$69,000
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NVIDIA DGX-1 WITH TESLA V100
ESSENTIAL INSTRUMENT OF AI RESEARCH

960 Tensor TFLOPS  |  8x Tesla V100  |  NVLink Hybrid Cube

From 8 days on TITAN X to 8 hours

400 servers in a box
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NVIDIA DGX-1 WITH TESLA V100
ESSENTIAL INSTRUMENT OF AI RESEARCH

960 Tensor TFLOPS  |  8x Tesla V100  |  NVLink Hybrid Cube

From 8 days on TITAN X to 8 hours

400 servers in a box

$149,000
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DNN TRAINING WITH DGX-1
Iterate and Innovate Faster
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DNN INFERENCE
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TensorRT

High-performance framework 
makes it easy to develop 
GPU-accelerated inference

Production deployment solution 
for deep learning inference

Optimized inference for a given 
trained neural network and target 
GPU

Solutions for Hyperscale, ADAS, 
Embedded

Supports deployment of 
fp32,fp16,int8* inference

TensorRT for Data Center

Image 
Classification

Object 

Detection

Image 

Segmentation

TensorRT for Automotive

Pedestrian
Detection

Lane 

Tracking

Traffic Sign

Recognition

NVIDIA DRIVE PX 2
* int8 support will be available from v2
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TensorRT
Optimizations

Fuse network layers

Eliminate concatenation layers

Kernel specialization

Auto-tuning for target platform

Tuned for given batch size
TRAINED

NEURAL NETWORK

OPTIMIZED
INFERENCE
RUNTIME
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NVIDIA TENSORRT
Programmable Inference Accelerator

Weight & Activation Precision Calibration  |  Layer & Tensor Fusion
Kernel Auto-Tuning  |  Multi-Stream Execution

concat

batch nm batch nm batch nm batch nm

max pool

input

relu relu relu relu

1x1 conv 3x3 conv 5x5 conv 1x1 conv

relu

batch nm

1x1 conv

relu

batch nm

1x1 conv

next input

next input

max pool

input

copy 3x3 CR 5x5 CR 1x1 CR

1x1 CR
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V100 INFERENCE
Datacenter Inference Acceleration

• 3.7x faster inference on V100 
vs. P100

• 18x faster inference on 
TensorFlow models on V100

• 40x faster than CPU-only
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AUTONOMOUS VEHICLE TECHNOLOGY
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AI IS THE SOLUTION TO SELF DRIVING CARS

PERCEPTION REASONING DRIVING

HD MAP AI COMPUTINGMAPPING
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PARKER

NVIDIA’s next-generation Pascal 
graphics architecture

1.5 teraflops

NVIDIA’s next-generation ARM 64b 
Denver 2 CPU

Functional safety for automotive 
applications

Next-Generation System-on-Chip

ARM v8

CPU

COMPLEX

(2x Denver 2 + 4x A57)

Coherent HMP

SECURITY

ENGINES
2D ENGINE

4K60

VIDEO

ENCODER

4K60

VIDEO

DECODER

AUDIO

ENGINE

DISPLAY

ENGINES

IMAGE 

PROC (ISP)

128-bit 

LPDDR4

BOOT and 

PM PROC

GigE

Ethernet

MAC

I/O
Safety 

Engine
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2 Complete AI Systems
Pascal Discrete GPU

1,280 CUDA Cores
4 GB GDDR5 RAM

Parker SOC Complex
256 CUDA Cores
4 Cortex A57 Cores
2 NVIDIA Denver2 Cores
8 GB LPDDR4 RAM
64 GB Flash

Safety Microprocessor
Infineon AURIX Safety Microprocessor

ASIL D

DRIVE PX 2 COMPUTE 
COMPLEXES

14
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NVIDIA DRIVE PLATFORM
Level 2 -> Level 5

1 TOPS

10 TOPS

100 TOPS

DRIVE PX 2 Parker
Level 2/3

DRIVE PX Xavier
Level 4/5

DRIVE PX 2

2 PARKER + 2 PASCAL GPU  |  20 TOPS DL  |  120 SPECINT  |  80W

DRIVE PX (Xavier)

30 TOPS DL  |  160 SPECINT  |  30W

ONE ARCHITECTURE
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ANNOUNCING XAVIER DLA
NOW OPEN SOURCE

Command Interface

Tensor Execution Micro-controller

Memory Interface

Input DMA

(Activations 

and Weights)

Unified

512KB 

Input

Buffer

Activations 

and 

Weights

Sparse Weight 

Decompression

Native 

Winograd

Input

Transform

MAC

Array

2048 Int8

or

1024 Int16

or

1024 FP16

Output 

Accumulators

Output 

Postprocess

or

(Activation 

Function, 

Pooling 

etc.)

Output 

DMA

http://nvdla.org/
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NVIDIA DRIVE 
END TO END SELF-DRIVING CAR PLATFORM

Training on 
DGX-1

Driving with 
DriveWorks

KALDI
LOCALIZATION

MAPPING

DRIVENET

PILOTNET

NVIDIA DGX-1 NVIDIA DRIVE PX2



78

DRIVING AND IMAGING
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CURRENT DRIVER ASSIST

PLAN ACT

CPU

WARN 

FPGA

CV ASIC

SENSE

BRAKE
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CURRENT DRIVER ASSIST

PLAN ACT

CPU

WARN 

FPGA

CV ASIC

SENSE

BRAKE
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FUTURE AUTONOMOUS DRIVING SYSTEM

PLAN ACT

CPU

WARN 
FPGA

CV ASIC

DNN

SENSE

BRAKE

STEER

ACCELERATE
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NVIDIA BB8 AI CAR —

LEARNING BY EXAMPLE
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BB8 SELF-DRIVING CAR DEMO

https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/

https://youtu.be/fmVWLr0X1Sk

https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/
https://youtu.be/fmVWLr0X1Sk


WORKING @ NVIDIA
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OUR CULTURE

A LEARNING MACHINE

INNOVATION
“willingness to take risks”

ONE TEAM
“what’s best for the company”

INTELLECTUAL HONESTY
“admit mistakes, no ego”

SPEED & AGILITY
“the world is changing fast”

EXCELLENCE
“hold ourselves to the highest standards”
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11,000 employees — Tackling challenges that matter

Top 50 “Best Places to Work” — Glassdoor

#1 of the “50 Smartest Companies” — MIT Tech Review

A GREAT PLACE TO WORK
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JOIN THE NVIDIA TEAM: INTERNS AND NEW GRADS

We’re hiring interns and new college grads. Come join the industry leader 
in virtual reality, artificial intelligence, self-driving cars, and gaming.

Learn more at: www.nvidia.com/university

http://www.nvidia.com/university


THANK YOU


