NVIDIA GPU COMPUTING: A JOURNEY FROM PC GAMING TO DEEP LEARNING

Stuart Oberman | October 2017

NVIDIA ACCELERATED COMPUTING

GEFORCE: PC Gaming

200M GeForce gamers worldwide Most advanced technology Gaming ecosystem: More than just chips Amazing experiences & imagery

IKI

NINTENDO SWITCH: POWERED BY NVIDIA TEGRA

GEFORCE NOW:

AMAZING GAMES ANYWHERE

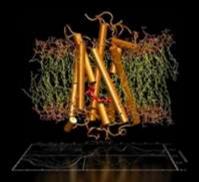
AAA titles delivered at 1080p 60fps

Streamed to SHIELD family of devices

Streaming to Mac (beta)

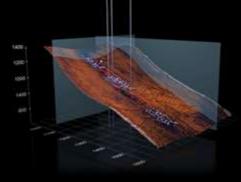
https://www.nvidia.com/enus/geforce/products/geforcenow/mac-pc/

GPU COMPUTING



Drug Design Molecular Dynamics 15x speed up

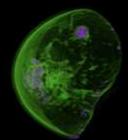
Astrophysics n-body



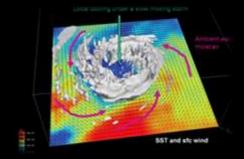
Seismic Imaging Reverse Time Migration 14x speed up

Options Pricing Monte Carlo 20x speed up

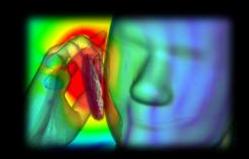
Automotive Design Computational Fluid Dynamics



Medical Imaging Computed Tomography 30-100x speed up



Weather Forecasting Atmospheric Physics



Product Development Finite Difference Time Domain

2017: TESLA VOLTA V100

21B transistors 815 mm²

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

*full GV100 chip contains 84 SMs

V100 SPECIFICATIONS

	Tesla V100 PCle	Tesla V100 SXM2
GPU Architecture	NVIDIA Volta	
NVIDIA Tensor Cores	640	
NVIDIA CUDA® Cores	5,120	
Double-Precision Performance	7 TFLOPS	7.5 TFLOPS
Single-Precision Performance	14 TFLOPS	15 TFLOPS
Tensor Performance	112 TFL0PS	120 TFLOPS
GPU Memory	16 GB HBM2	
Memory Bandwidth	900 GB/sec	
ECC	Yes	
Interconnect Bandwidth*	32 GB/sec	300 GB/sec
System Interface	PCIe Gen3	NVIDIA NVLink
Form Factor	PCIe Full Height/Length	SXM2
Max Power Comsumption	250 W	300 W

HOW DID WE GET HERE?

NVIDIA GPUS: 1999 TO NOW

https://youtu.be/I25dLTIPREA

SOUL OF THE GRAPHICS PROCESSING UNIT

GPU: Changes Everything

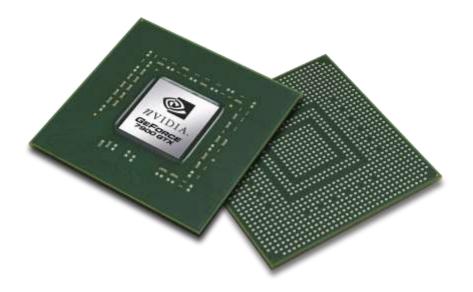
- Accelerate computationally-intensive applications
- NVIDIA introduced GPU in 1999
 - A single chip processor to accelerate PC gaming and 3D graphics
- Goal: approach the image quality of movie studio offline rendering farms, but in real-time
 - Instead of hours per frame, > 60 frames per second
- Millions of pixels per frame can all be operated on in parallel
 - 3D graphics is often termed *embarrassingly parallel*
- Use large arrays of floating point units to exploit wide and deep parallelism

CLASSIC GEFORCE GPUS

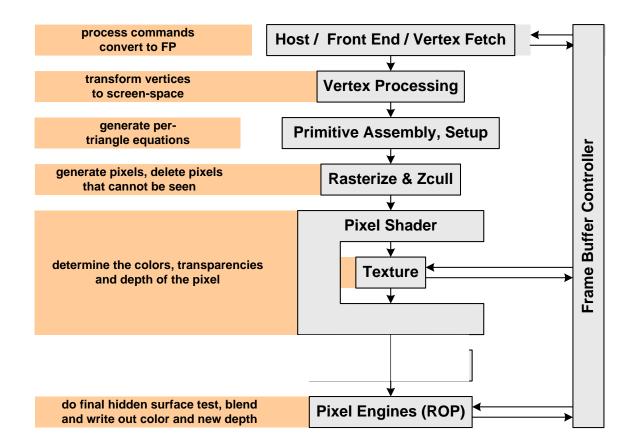
GEFORCE 6 AND 7 SERIES

2004-2006

- Example: GeForce 7900 GTX
- 278M transistors
- 650MHz pipeline clock
- 196mm² in 90nm
- >300 GFLOPS peak, single-precision



THE LIFE OF A TRIANGLE IN A GPU Classic Edition

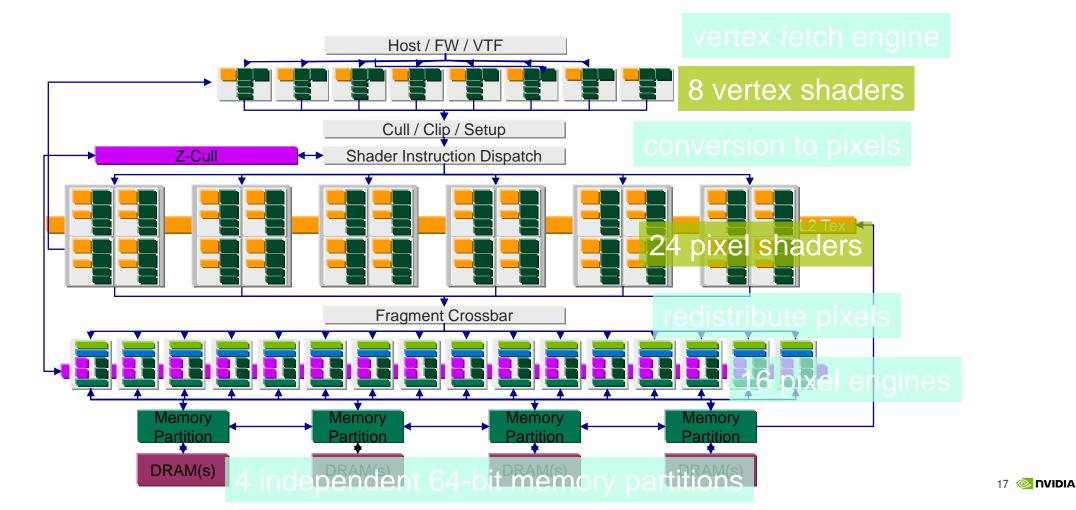


15 📀 nvidia

NUMERIC REPRESENTATIONS IN A GPU

- Fixed point formats
 - u8, s8, u16, s16, s3.8, s5.10, ...
- Floating point formats
 - fp16, fp24, fp32, ...
 - Tradeoff of dynamic range vs. precision
- Block floating point formats
 - Treat multiple operands as having a common exponent
 - Allows a tradeoff in dynamic range vs storage and computation

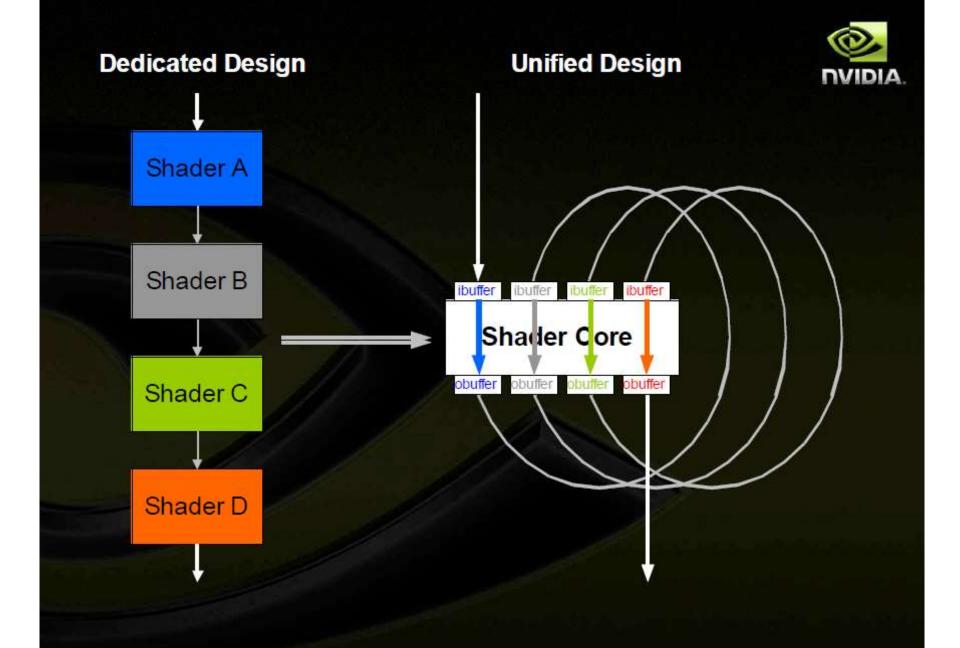
INSIDE THE 7900GTX GPU



G80: REDEFINED THE GPU

G80 GeForce 8800 released 2006

- G80 first GPU with a unified shader processor architecture
 - Introduced the SM: Streaming Multiprocessor
 - Array of simple streaming processor cores: SPs or CUDA cores
 - All shader stages use the same instruction set
 - All shader stages execute on the same units
- Permits better sharing of SM hardware resources
- Recognized that building dedicated units often results in under-utilization due to the application workload



G80 FEATURES

- 681M transistors
- 470mm2 in 90nm
- First to support Microsoft DirectX10 API
- Invested a little extra (epsilon) HW in SM to also support general purpose throughput computing
 - Beginning of CUDA everywhere
- SM functional units designed to run at 2x frequency, half the number of units
 - 576 GFLOPs @ 1.5GHz , IEEE 754 fp32 FADD and FMUL
- 155W

BEGINNING OF GPU COMPUTING

Throughput Computing

- Latency Oriented
 - Fewer, bigger cores with out-of-order, speculative execution
 - Big caches optimized for latency
 - Math units are small part of the die
- Throughput Oriented
 - Lots of simple compute cores and hardware scheduling
 - Big register files. Caches optimized for bandwidth.
 - Math units are most of the die

CUDA

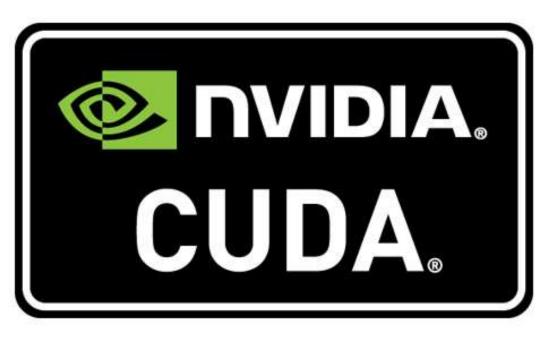
Most successful environment for throughput computing

C++ for throughput computers

On-chip memory management

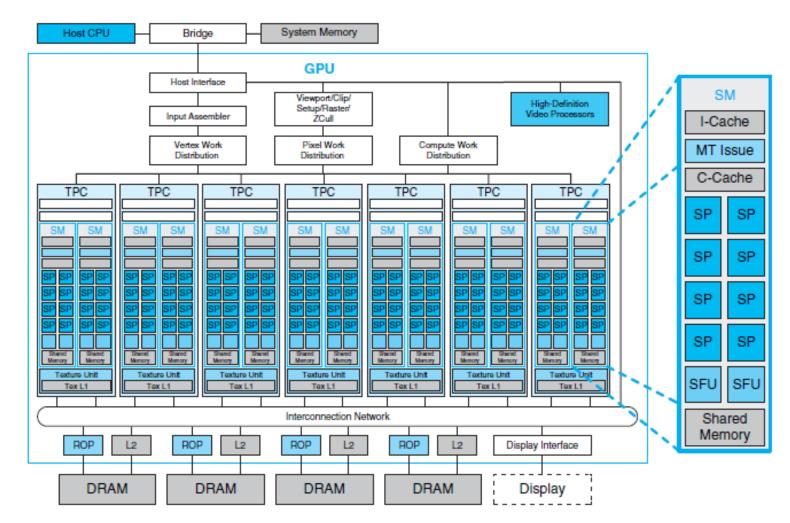
Asynchronous, parallel API

Programmability makes it possible to innovate



New layer type? No problem.

G80 ARCHITECTURE



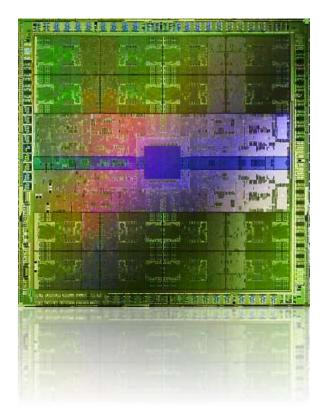
24 📀 nvidia.

FROM FERMI TO PASCAL

FERMI GF100

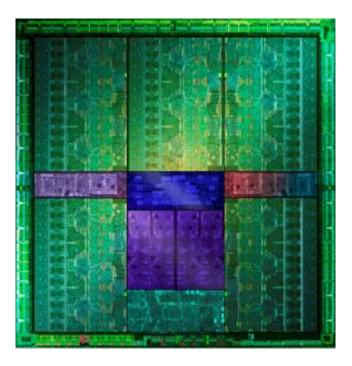
Tesla C2070 released 2011

- 3B transistors
- 529 mm2 in 40nm
- 1150 MHz SM clock
- 3rd generation SM, each with configurable L1/shared memory
- IEEE 754-2008 FMA
- 1030 GFLOPS fp32, 515 GFLOPS fp64
- 247W

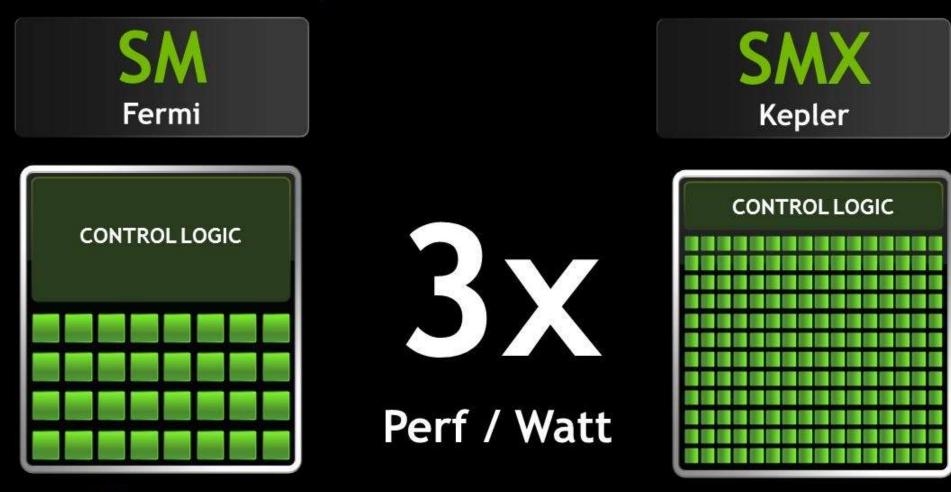


KEPLER GK110 Tesla K40 released 2013

- 7.1B transistors
- 550 mm2 in 28nm
- Intense focus on power efficiency, operating at lower frequency
 - 2880 CUDA cores at 810 MHz
- Tradeoff of area efficiency vs. power efficiency
- 4.3 TFLOPS fp32, 1.4 TFLOPS fp64
- 235W



Kepler: Fast & Efficient



192 cores

32 cores

TITAN SUPERCOMPUTER

Oak Ridge National Laboratory

World's #1 Open Science Supercomputer

Flagship accelerated computing system | 200-cabinet Cray XK7 supercomputer | 18,688 nodes (AMD 16-core Opteron + NVIDIA Tesla K20 GPU) | CPUs/GPUs working together – GPU accelerates | 20+ Petaflops

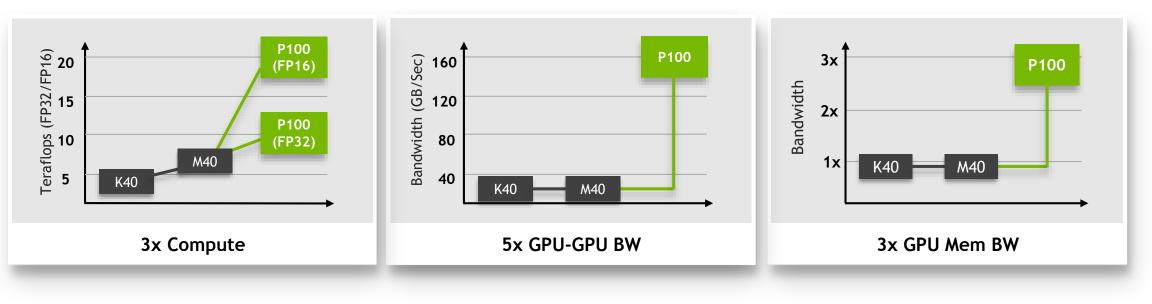


29

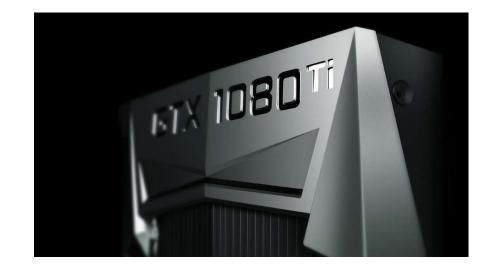
PASCAL GP100 released 2016

- 15.3B transistors
- 610 mm2 in 16ff
- 10.6 TFLOPS fp32, 5.3 TFLOPS fp64
- 21 TFLOPS fp16 for Deep Learning training and inference acceleration
- New high-bandwidth NVLink GPU interconnect
- HBM2 stacked memory
- 300W

MAJOR ADVANCES IN PASCAL



GEFORCE GTX 1080TI



https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/

https://youtu.be/2c2vN736V60

FINAL FANTASY XV PREVIEW DEMO WITH GEFORCE GTX 1080TI

https://www.geforce.com/whats-new/articles/final-fantasy-xv-windows-edition-4ktrailer-nvidia-gameworks-enhancements

https://youtu.be/h0o3fctwXw0

TESLA V100: 2017

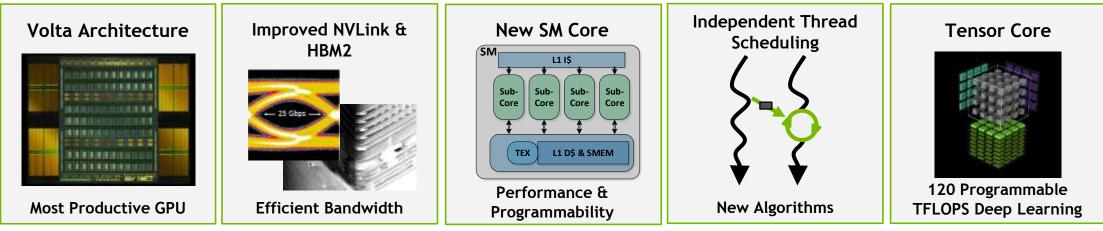
21B transistors 815 mm² in 16ff

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

*full GV100 chip contains 84 SMs

TESLA V100



More V100 Features: 2x L2 atomics, int8, new memory model, copy engine page migration, MPS acceleration, and more ...

The Fastest and Most Productive GPU for Deep Learning and HPC

GPU PERFORMANCE COMPARISON

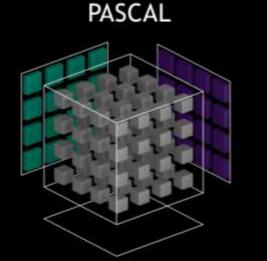
	P100	V100	Ratio
DL Training	10 TFLOPS	120 TFLOPS	12x
DL Inferencing	21 TFLOPS	120 TFLOPS	6x
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x
HBM2 Bandwidth	720 GB/s	900 GB/s	1.2x
STREAM Triad Perf	557 GB/s	855 GB/s	1.5x
NVLink Bandwidth	160 GB/s	300 GB/s	1.9 x
L2 Cache	4 MB	6 MB	1.5x
L1 Caches	1.3 MB	10 MB	7.7x

TENSOR CORE

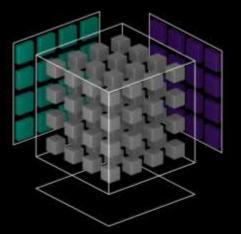
CUDA TensorOp instructions & data formats 4x4 matrix processing array

D[FP32] = A[FP16] * B[FP16] + C[FP32]

Optimized for deep learning

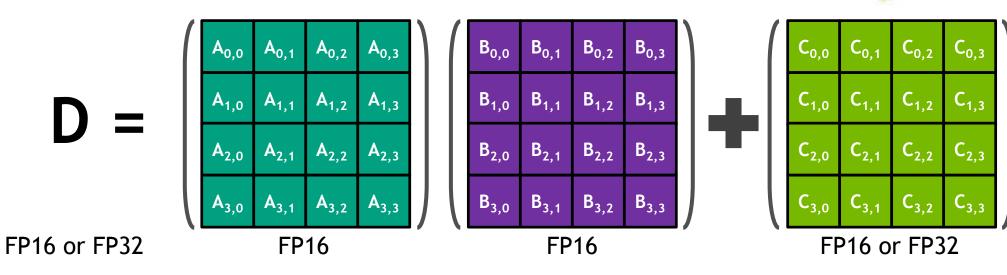


VOLTA TENSOR CORES



TENSOR CORE

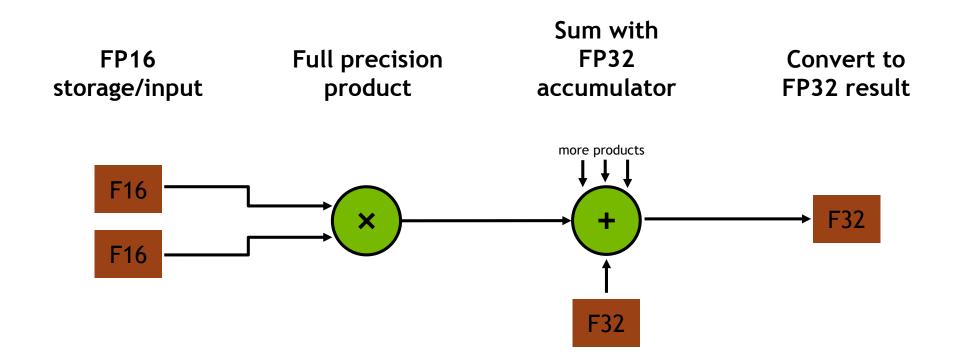
Mixed Precision Matrix Math 4x4 matrices



D = AB + C

39 📀 nvidia

VOLTA TENSOR OPERATION



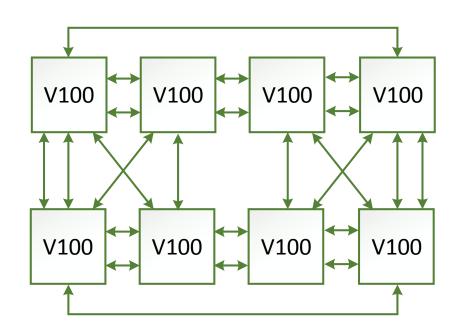
Also supports FP16 accumulator mode for inferencing

NVLINK - PERFORMANCE AND POWER

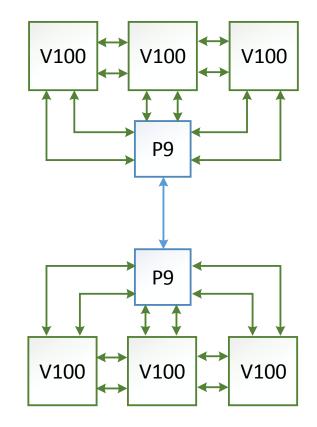
	25Gbps signaling	
Bandwidth	6 NVLinks for GV100	
	1.9 x Bandwidth improvement over GP100	
	Latency sensitive CPU caches GMEM	
Coherence	Fast access in local cache hierarchy	
	Probe filter in GPU	
Power Savings	Reduce number of active lanes for lightly loaded li	

NVLINK NODES

HPC - P9 CORAL NODE - SUMMIT



DL - HYBRID CUBE MESH - DGX-1 w/ Volta



42 📀 nvidia

NARROWING THE SHARED MEMORY GAP

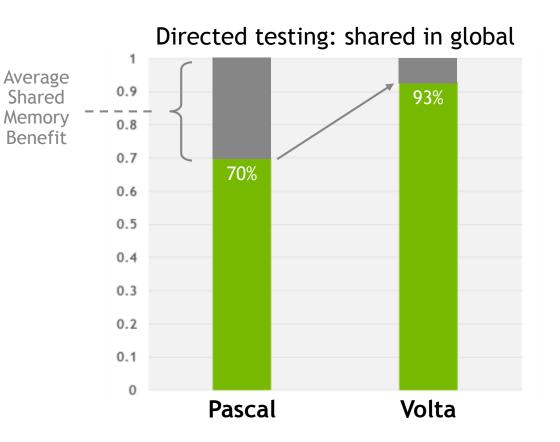
with the GV100 L1 cache

Cache: vs shared

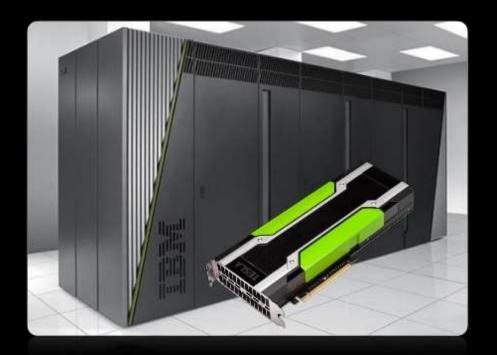
- Easier to use
- 90%+ as good

Shared: vs cache

- Faster atomics
- More banks
- More predictable



US to Build Two Flagship Supercomputers



SIERRA

150-300 PFLOPS Peak Performance IBM POWER9 CPU + NVIDIA Volta GPU NVLink High Speed Interconnect 40 TFLOPS per Node, >3,400 Nodes 2017

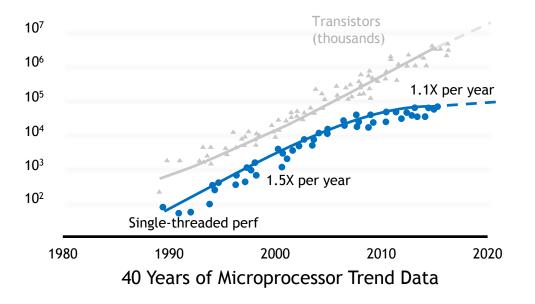
Major Step Forward on the Path to Exascale

44 💿 nvidia

3

GPU COMPUTING AND DEEP LEARNING

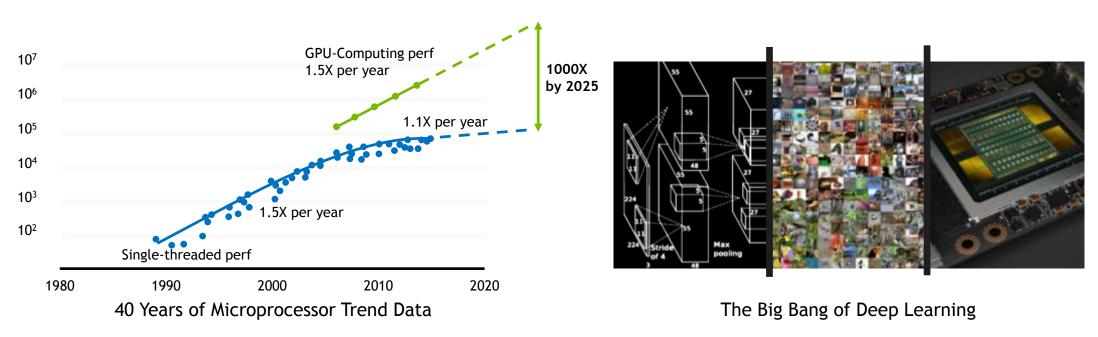
TWO FORCES DRIVING THE FUTURE OF COMPUTING



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

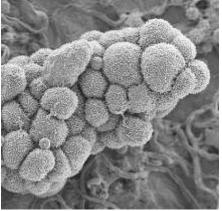
The Big Bang of Deep Learning

RISE OF NVIDIA GPU COMPUTING



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

DEEP LEARNING EVERYWHERE



INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

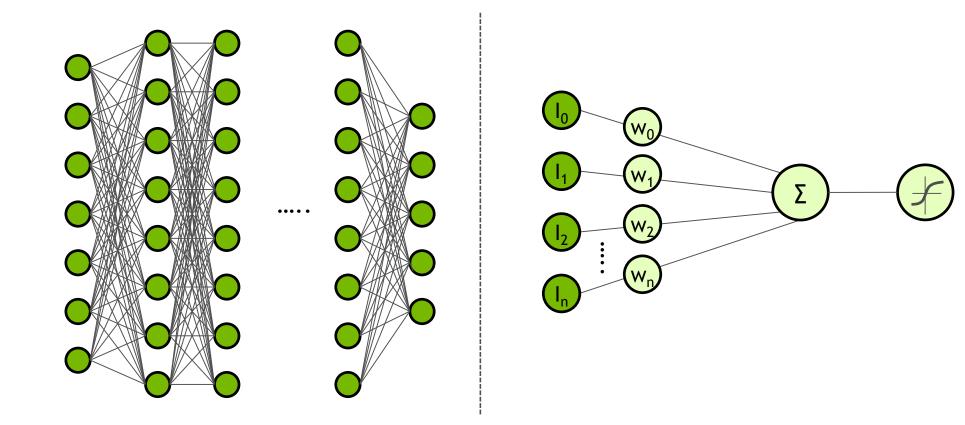
Video Captioning Video Search Real Time Translation SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

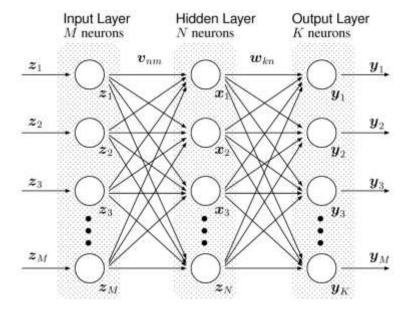
DEEP NEURAL NETWORK



ANATOMY OF A FULLY CONNECTED LAYER Lots of dot products

Each neuron calculates a dot product, M in a layer

$$x_1 = g(\boldsymbol{v}_{x_1} * \boldsymbol{z})$$



COMBINE THE DOT PRODUCTS

What if we assemble the weights into a matrix?

Each neuron calculates a dot product, M in a layer

 $x_1 = g(\boldsymbol{v}_{x_1} * \boldsymbol{z})$

What if we assemble the weights as [M, K] matrix?

Matrix-vector multiplication (GEMV)

Unfortunately ...

M*K+2*K elements load/store

M*K FMA math operations

This is memory bandwidth limited!

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

BATCH TO GET MATRIX MULTIPLICATION

Making the problem math limited

Can we turn this into a GEMM?

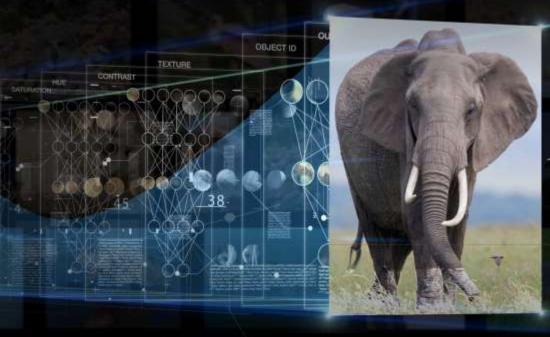
"Batching": process several inputs at once

Input is now a matrix, not a vector

Weight matrix remains the same

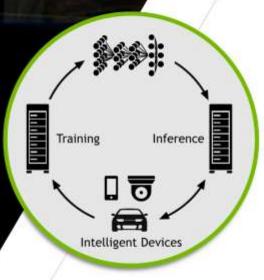
1 <= N <= 128 is common

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

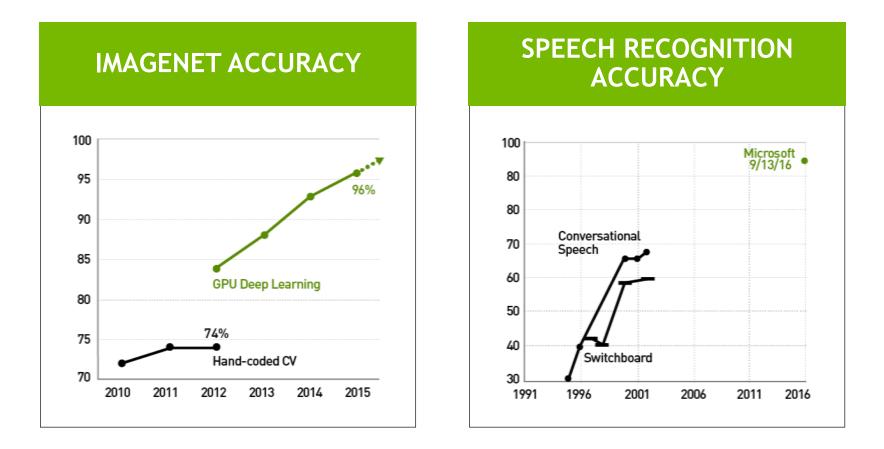


ELEPHANT IN GRASS

GPU DEEP LEARNING – A NEW COMPUTING MODEL

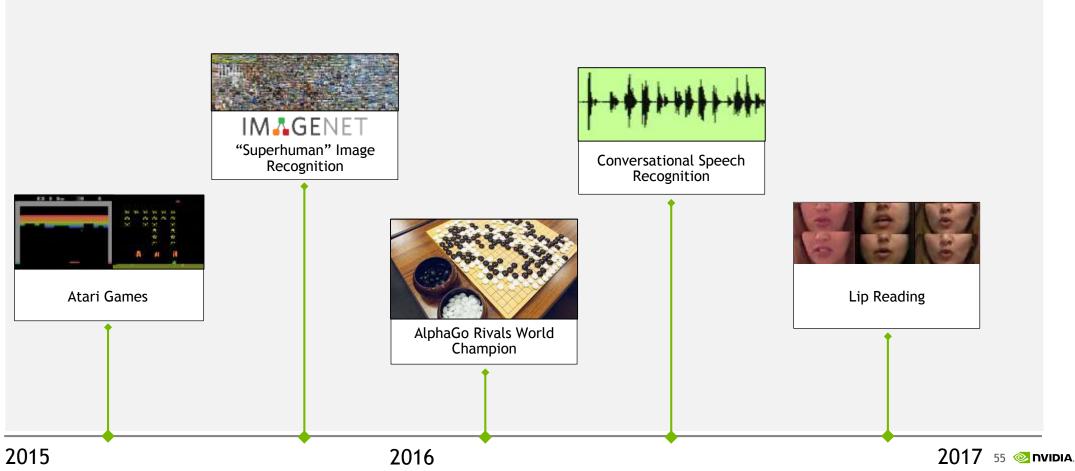


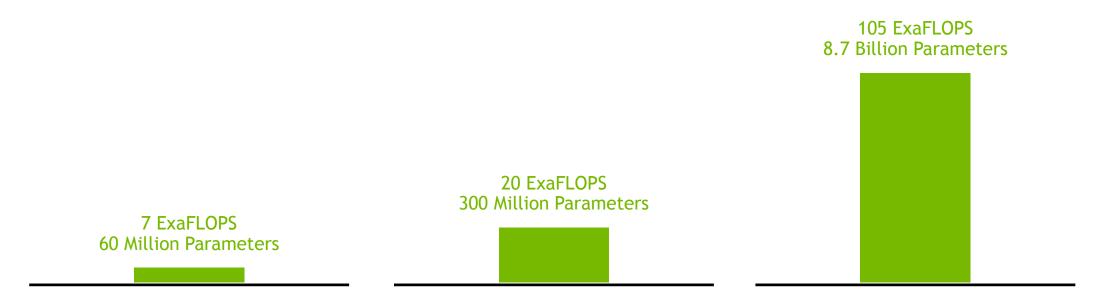
AI IMPROVING AT AMAZING RATES



AI BREAKTHROUGHS

Recent Breakthroughs





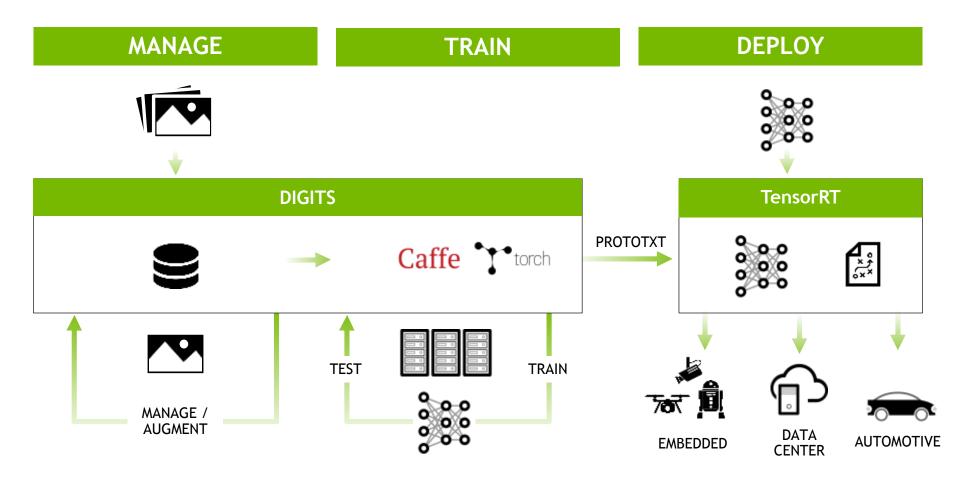
2015 – Microsoft ResNet

2016 – Baidu Deep Speech 2

2017 – Google NMT

NVIDIA DNN ACCELERATION

A COMPLETE DEEP LEARNING PLATFORM



DNN TRAINING

NVIDIA DGX SYSTEMS

Built for Leading AI Research

https://www.nvidia.com/en-us/data-center/dgx-systems/

https://youtu.be/8xYz46h3MJ0

NVIDIA DGX STATION PERSONAL DGX

480 Tensor TFLOPS | 4x Tesla V100 16GB

NVLink Fully Connected | 3x DisplayPort

1500W | Water Cooled

NVIDIA DGX STATION PERSONAL DGX

480 Tensor TFLOPS | 4x Tesla V100 16GB

NVLink Fully Connected | 3x DisplayPort

1500W | Water Cooled

\$69,000

NVIDIA DGX-1 WITH TESLA V100 ESSENTIAL INSTRUMENT OF AI RESEARCH

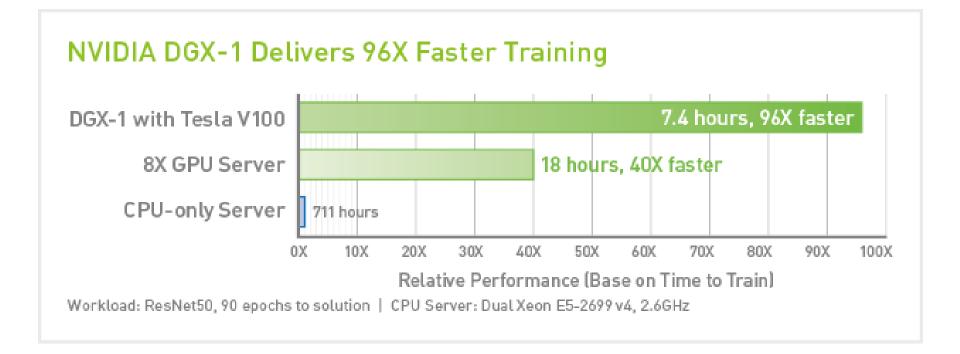
960 Tensor TFLOPS | 8x Tesla V100 | NVLink Hybrid Cube
From 8 days on TITAN X to 8 hours
400 servers in a box

NVIDIA DGX-1 WITH TESLA V100 ESSENTIAL INSTRUMENT OF AI RESEARCH

960 Tensor TFLOPS | 8x Tesla V100 | NVLink Hybrid Cube From 8 days on TITAN X to 8 hours 400 servers in a box \$149,000

DNN TRAINING WITH DGX-1

Iterate and Innovate Faster



DNN INFERENCE

TensorRT

High-performance framework makes it easy to develop GPU-accelerated inference

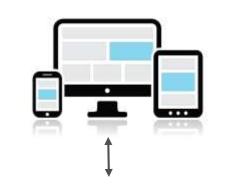
Production deployment solution for deep learning inference

Optimized inference for a given trained neural network and target GPU

Solutions for Hyperscale, ADAS, Embedded

Supports deployment of fp32,fp16,int8* inference

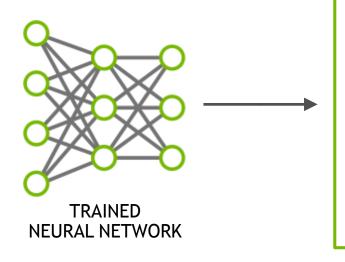
 * int8 support will be available from v2



TensorRT for Data Center					
Image Classification	Object Detection	Image Segmentation			

Tensor KT Tor Automotive				
Pedestrian Detection	Lane Tracking	Traffic Sign Recognition		
	and a second			

TensorRT Optimizations

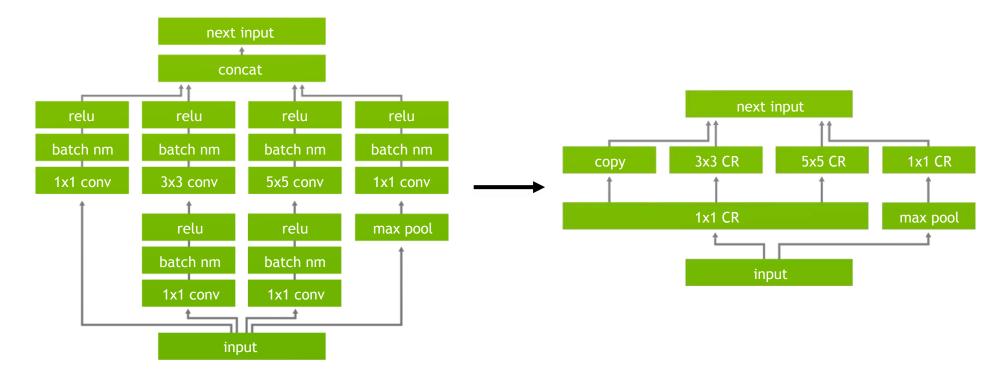


Fuse network layers Eliminate concatenation layers Kernel specialization Auto-tuning for target platform Tuned for given batch size

OPTIMIZED INFERENCE RUNTIME

NVIDIA TENSORRT

Programmable Inference Accelerator

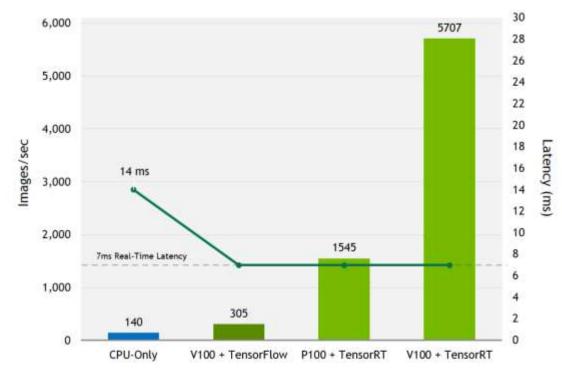


Weight & Activation Precision Calibration | Layer & Tensor Fusion Kernel Auto-Tuning | Multi-Stream Execution

V100 INFERENCE

Datacenter Inference Acceleration

- 3.7x faster inference on V100 vs. P100
- 18x faster inference on TensorFlow models on V100
- 40x faster than CPU-only



Inference throughput (images/sec) on ResNet50. V100 + TensorRT. NVIDIA TensorRT (FP16) @ 6.97 ms latency, batch size 39, Tesla V100-SXM2-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. P100 + TensorRT: NVIDIA TensorRT (FP16) @ 6.47 ms latency, batch size 10, Tesla P100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow: Preview of volta optimized TensorFlow (FP16) @ 6.67 ms latency, batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel Xeon-D 1587 Broadwell-E CPU and Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvement on Skylake with AVX512.

AUTONOMOUS VEHICLE TECHNOLOGY

AI IS THE SOLUTION TO SELF DRIVING CARS

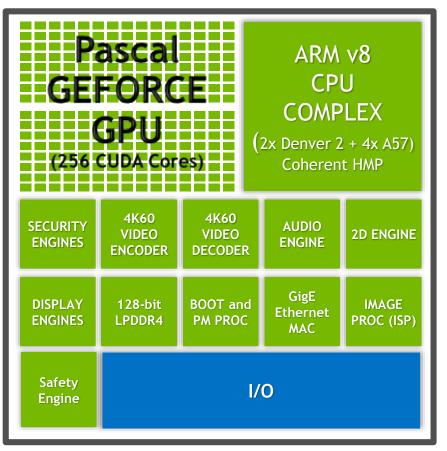
PARKER Next-Generation System-on-Chip

NVIDIA's next-generation Pascal graphics architecture

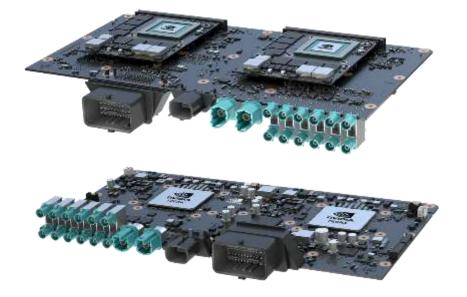
1.5 teraflops

NVIDIA's next-generation ARM 64b Denver 2 CPU

Functional safety for automotive applications



73 💿 nvidia.



DRIVE PX 2 COMPUTE COMPLEXES

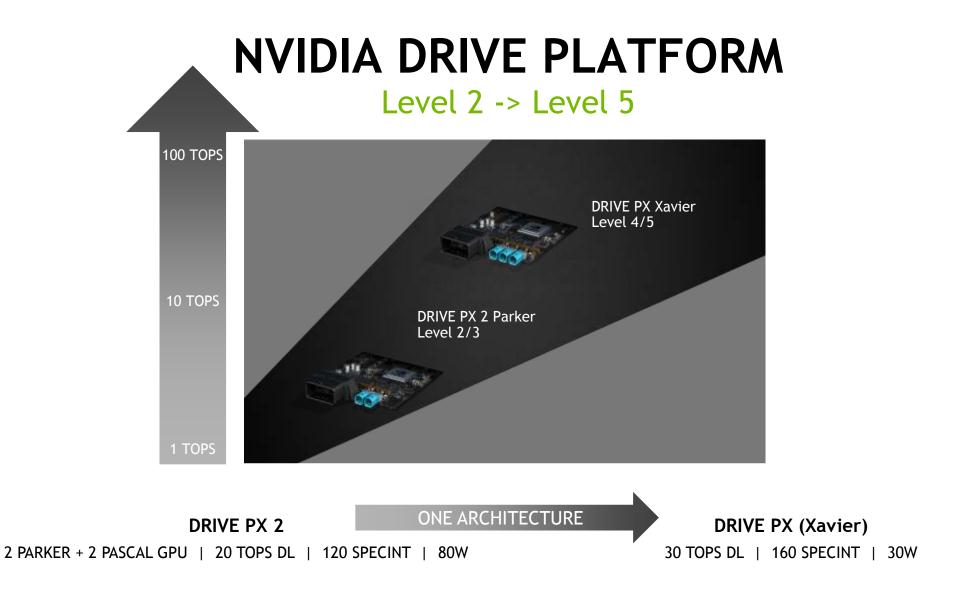
2 Complete AI Systems

Pascal Discrete GPU 1,280 CUDA Cores 4 GB GDDR5 RAM

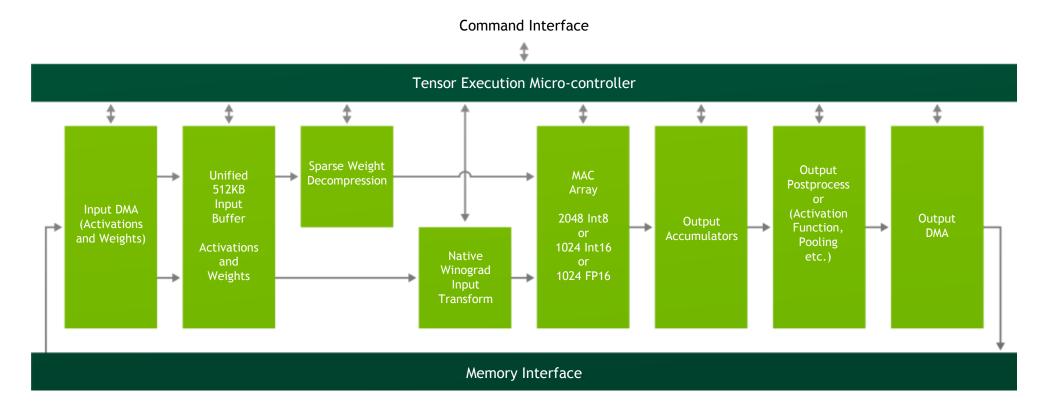
Parker SOC Complex 256 CUDA Cores 4 Cortex A57 Cores 2 NVIDIA Denver2 Cores 8 GB LPDDR4 RAM 64 GB Flash

Safety Microprocessor

Infineon AURIX Safety Microprocessor ASIL D

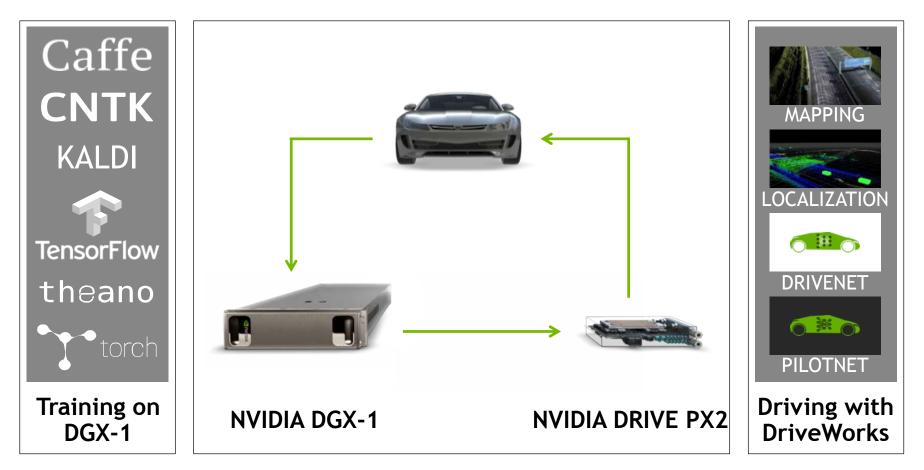


ANNOUNCING XAVIER DLA NOW OPEN SOURCE

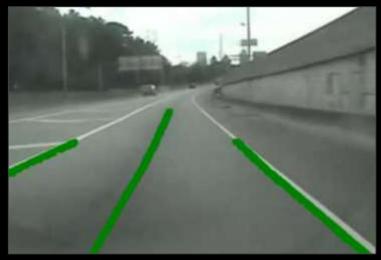


http://nvdla.org/

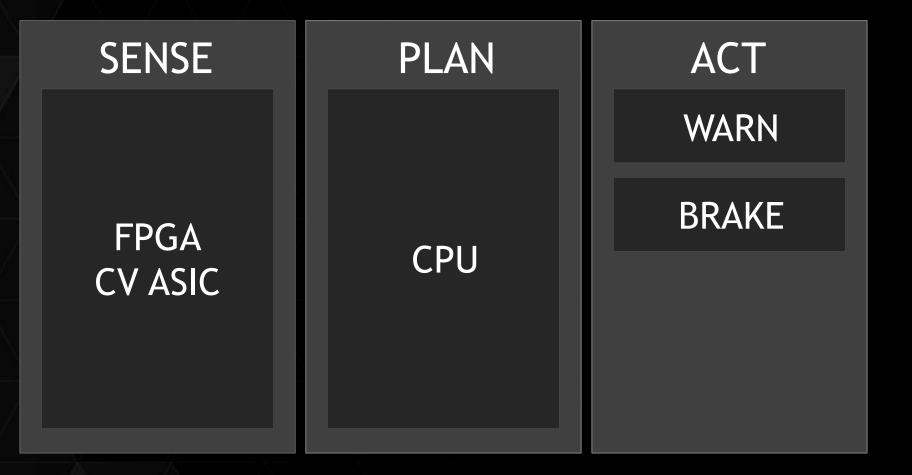
NVIDIA DRIVE END TO END SELF-DRIVING CAR PLATFORM

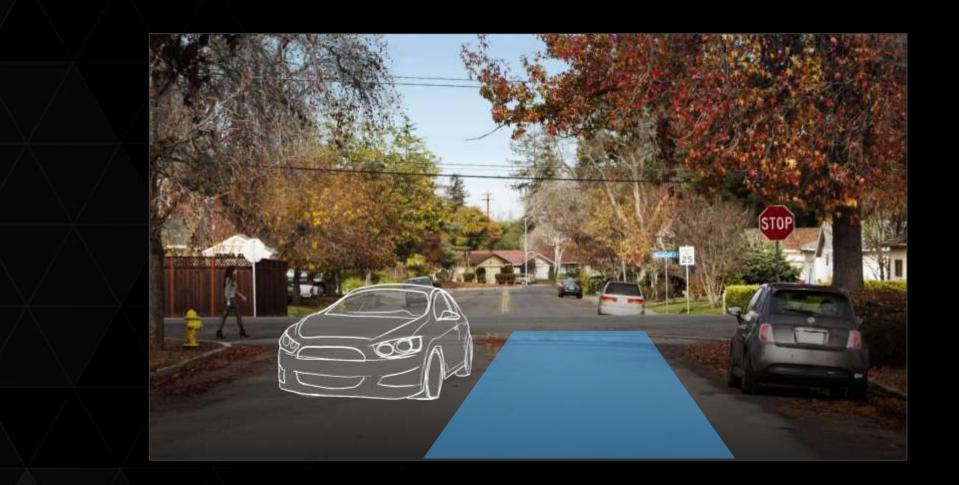


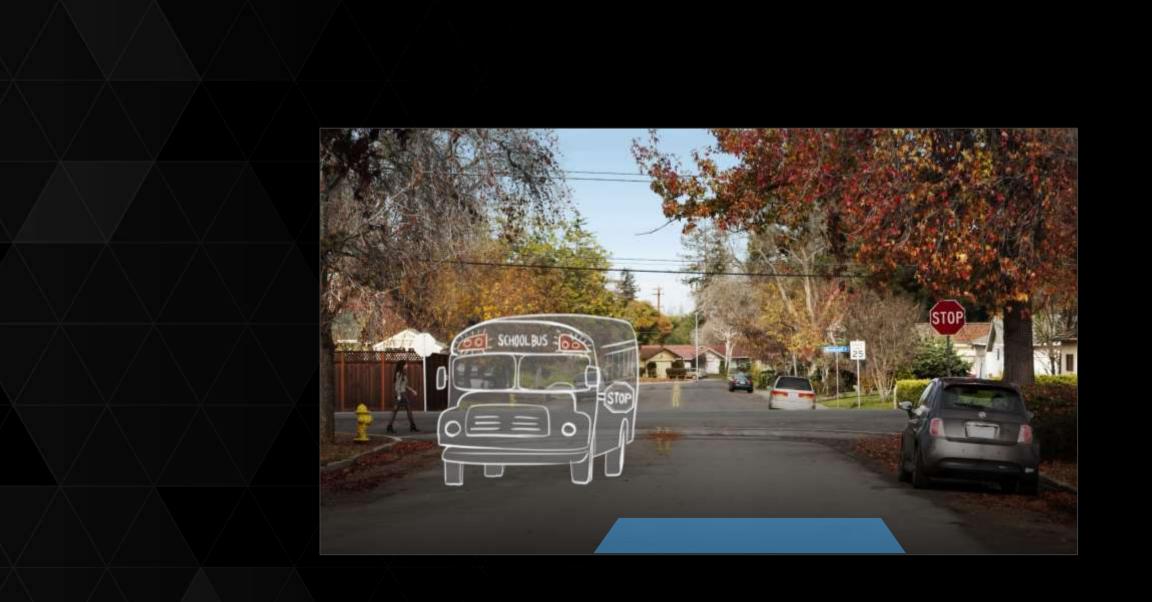
DRIVING AND IMAGING

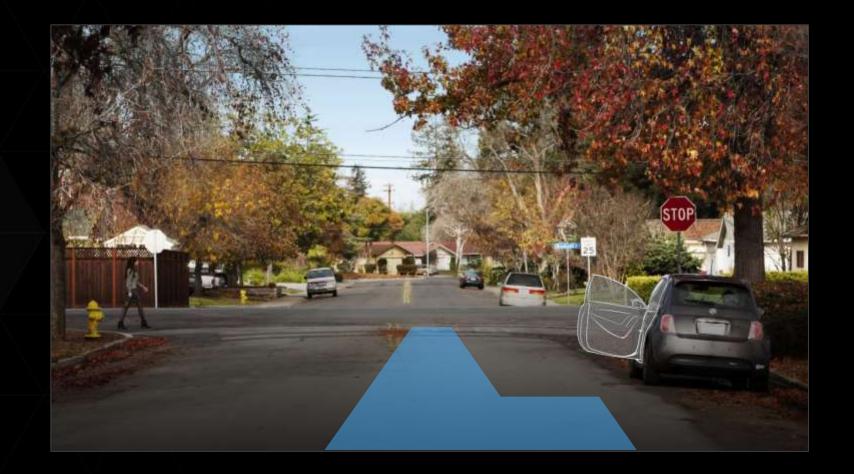


CURRENT DRIVER ASSIST

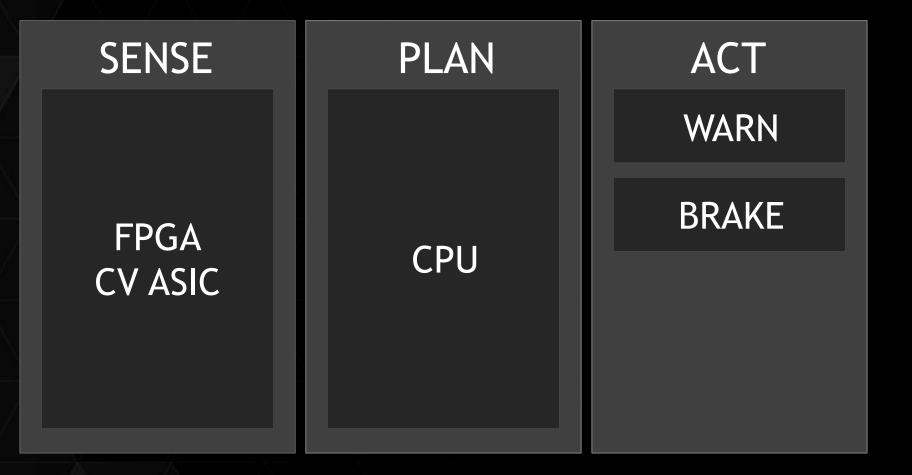




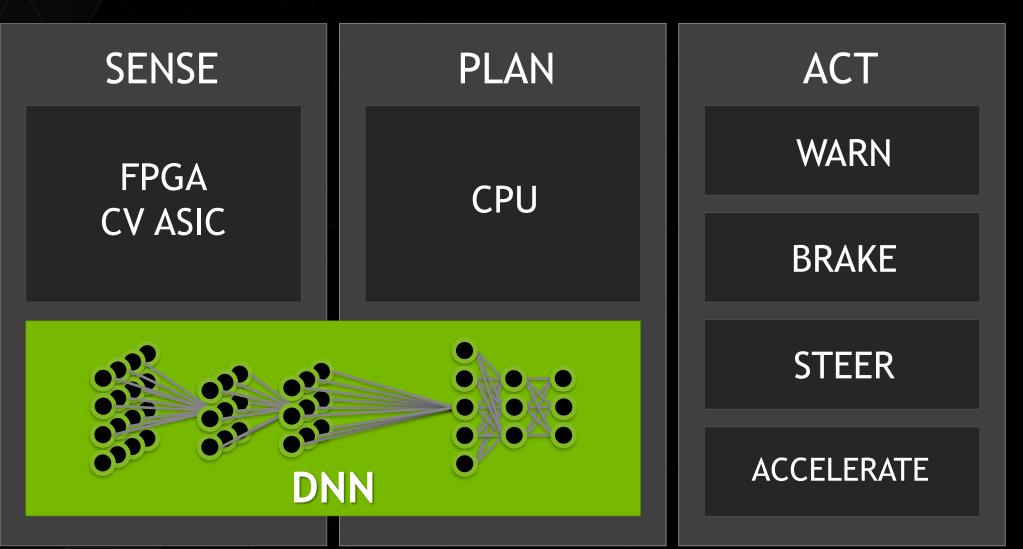




CURRENT DRIVER ASSIST



FUTURE AUTONOMOUS DRIVING SYSTEM



NVIDIA BB8 AI CAR — LEARNING BY EXAMPLE

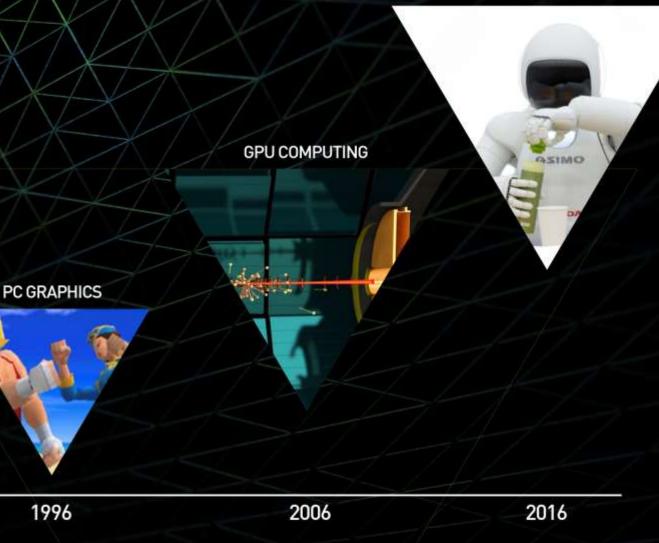
BB8 SELF-DRIVING CAR DEMO

https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/

https://youtu.be/fmVWLr0X1Sk

WORKING @ NVIDIA

💿 NVIDIA.



OUR CULTURE A LEARNING MACHINE

INNOVATION "willingness to take risks"

ONE TEAM "what's best for the company"

INTELLECTUAL HONESTY "admit mistakes, no ego"

SPEED & AGILITY

"the world is changing fast"

EXCELLENCE "hold ourselves to the highest standards"

A GREAT PLACE TO WORK

11,000 employees – Tackling challenges that matter
Top 50 "Best Places to Work" – Glassdoor
#1 of the "50 Smartest Companies" – MIT Tech Review

JOIN THE NVIDIA TEAM: INTERNS AND NEW GRADS

We're hiring interns and new college grads. Come join the industry leader in virtual reality, artificial intelligence, self-driving cars, and gaming.

Learn more at: www.nvidia.com/university

THANK YOU

