
Concatenative Programming

From Ivory to Metal



Jon Purdy ● Why Concatenative Programming 
Matters (2012)

● Spaceport (2012–2013)
Compiler engineering

● Facebook (2013–2014)
Site integrity infrastructure (Haxl)

● There Is No Fork: An Abstraction 
for Efficient, Concurrent, and 
Concise Data Access (ICFP 2014)

● Xamarin/Microsoft (2014–2017)
Mono runtime (performance, GC)



What I Want in a 
Programming 
Language

● Prioritize reading & modifying 
code over writing it

● Be expressive—syntax closely 
mirroring high-level semantics

● Encourage “good” code (reusable, 
refactorable, testable, &c.)

● “Make me do what I want anyway”
● Have an “obvious” efficient 

mapping to real hardware (C)
● Be small—easy to understand & 

implement tools for
● Be a good citizen—FFI, embedding
● Don’t “assume you’re the world”



● Forth (1970)
Chuck Moore

● PostScript (1982)
Warnock, Geschke, & Paxton

● Joy (2001)
Manfred von Thun

● Factor (2003)
Slava Pestov &al.

● Cat (2006)
Christopher Diggins

● Kitten (2011)
Jon Purdy

● Popr (2012)
Dustin DeWeese

● …

Notable
Concatenative
Programming
Languages



History



Three
Formal Systems of
Computation

● Lambda Calculus (1930s)
Alonzo Church

● Turing Machine (1930s)
Alan Turing

● Recursive Functions (1930s)
Kurt Gödel



λx.x ≅ λy.y

λx.(λy.x) ≅ λy.(λz.y)

(λx.λy.λz.xz(yz))(λx.λy.x)(λx.λy.x)
≅ (λy.λz.(λx.λy.x)z(yz))(λx.λy.x)
≅ λz.(λx.λy.x)z((λx.λy.x)z)
≅ λz.(λx.λy.x)z((λx.λy.x)z)
≅ λz.z

e ::= x Variables
| λx. e Functions
| e1 e2 Applications

λx.M[x] ⇒ λy.M[y] α-conversion

(λx.M)E ⇒ M[E/x] β-reduction

Church’s Lambdas



M = ⟨Q, Γ, b, Σ, δ, q0, F⟩

Q Set of states
Γ Alphabet of symbols
b ∈ Γ Blank symbol
Σ ⊆ Γ ∖ {b} Input symbols
q0 ∈ Q, F ⊆ Q Initial & final states
δ State transition function

δ : (Q ∖ F) × Γ → Q × Γ × {L, R}

Turing’s Machines

● Begin with initial state & tape
● Repeat:

○ If final state, then halt
○ Apply transition function
○ Modify tape
○ Move left or right



Gödel’s Functions

f(x1, x2, …, xk) = n Constant

S(x) = x + 1 Successor

Pi
k(x1, x2, …, xk) = xi Projection

f ∘ g Composition

ρ(f, g) Primitive recursion

μ(f) Minimization



Three Four
Formal Systems of
Computation

● Lambda Calculus (1930s)
Alonzo Church

● Turing Machine (1930s)
Alan Turing

● Recursive Functions (1930s)
Kurt Gödel

● Combinatory Logic (1950s)
Moses Schönfinkel, Haskell Curry



Combinatory Logic (SKI, BCKW)

Bxyz = x(yz) Compose
Cxyz = xzy Flip
Kxy = x Constant
Wxy = xyy Duplicate

SKKx = Kx(Kx) = x

M = SII = λx.xx
L = CBM = λf.λx.f(xx)
Y = SLL = λf.(λx.f(xx))(λx.f(xx))

Just combinators and applications!

Sxyz = xz(yz) Application
S = λx.λy.λz.xz(yz) “Starling”

Kxy = x Constant
K = λx.λy.x “Kestrel”

Ix = x Identity
I = λx.x “Idiot”



Turing machines → imperative
Lambda calculus → functional
Combinatory logic →* concatenative

“A concatenative programming 
language is a point-free computer 
programming language in which all 
expressions denote functions, and the 
juxtaposition of expressions denotes 
function composition.”

— Wikipedia,
Concatenative Programming Language

What is 
concatenative 
programming?



“…a point-free computer 
programming language…”



find . -name '*.txt'

 | awk '{print length($1),$1}'

 | sort -rn

 | head

hist ∷ String → [(Char, Int)]

hist = map (head &&& length)

  . group . sort

  . filter (not . isSpace)

define hist (List<Char>

  → List<Pair<Char, Int>>):

  { is_space not } filter

  sort group

  { \head \length both_to

    pair } map

Point-Free Programming



Point-Free
(Pointless, Tacit)
Programming

● Programming: dataflow style 
using combinators to avoid 
references to variables or 
arguments

● Topology/geometry: abstract 
reasoning about spaces & regions 
without reference to any specific 
set of “points”

● Variables are “goto for data”: 
unstructured, sometimes needed, 
but structured programming is a 
better default

● “Name code, not data”



Can Programming Be Liberated
from the Von Neumann Style?
(1977) John Backus

CPU & memory connected by “von 
Neumann bottleneck” via primitive 
“word-at-a-time” style; programming 
languages reflect that

Value-Level Programming

int inner_product

(int n, int a[], int b[])

{

  int p = 0;

  for (int i = 0; i < n; ++i)

    p += a[i] * b[i];

  return p;

}



n=3; a={1, 2, 3}; b={6, 5, 4};

p ←  0;

i ←  0;

p ←  0 + 1 * 6 = 6;

i ←  0 + 1     = 1;

p ←  6 + 2 * 5 = 16;

i ←  1 + 1     = 2;

p ← 16 + 3 * 4 = 28;

28

Value-Level Programming

int inner_product

(int n, int a[], int b[])

{

  int p = 0;

  for (int i = 0; i < n; ++i)

    p += a[i] * b[i];

  return p;

}



● No high-level combining forms: 
everything built from primitives

● No useful algebraic properties:
○ Can’t easily factor out 

subexpressions without 
writing “wrapper” code

○ Can’t reason about subparts 
of programs without context 
(state, history)

● Semantics & state closely 
coupled: values depend on all 
previous states

● Too low-level:
○ Compiler infers structure to 

optimize (e.g. vectorization)
○ Programmer mentally 

executes program or steps 
through it in a debugger

Value-Level Programming



Def InnerProd ≡
(Insert +) ∘ (ApplyToAll ×) ∘ Transpose

Def InnerProd ≡
(/ +) ∘ (α ×) ∘ Trans

innerProd ∷ Num a ⇒ [[a]] → a

innerProd = sum

  . map product

  . transpose

FP



Def InnerProd ≡
(Insert +) ∘ (ApplyToAll ×) ∘ 
Transpose

Def InnerProd ≡
(/ +) ∘ (α ×) ∘ Trans

FP

InnerProd:⟨⟨1, 2, 3⟩, ⟨6, 5, 4⟩⟩
((/ +) ∘ (α ×) ∘ Trans):⟨⟨1,2,3⟩, ⟨6,5,4⟩⟩
(/ +):((α ×):(Trans:⟨⟨1,2,3⟩, ⟨6,5,4⟩⟩))
(/ +):((α ×):⟨⟨1,6⟩, ⟨2,5⟩, ⟨3,4⟩⟩)
(/ +):(⟨×:⟨1,6⟩, ×:⟨2,5⟩, ×:⟨3,4⟩⟩)
(/ +):⟨6,10,12⟩
+:⟨6, +:⟨10,12⟩⟩
+:⟨6,22⟩
28



● Stateless: values have no 
dependencies over time; all data 
dependencies are explicit

● High-level:
○ Expresses intent
○ Compiler knows structure
○ Programmer reasons about 

large conceptual units

● Made by only combining forms
● Useful algebraic properties
● Easily factor out subexpressions:

Def SumProd ≡ (+ /) ∘ (α ×)
Def ProdTrans ≡ (α ×) ∘ Trans

● Subprograms are all pure 
functions—all context explicit

Function-Level Programming



innerProd =: +/@:(*/"1@:|:)

innerProd >1 2 3; 6 5 4

(+/ @: (*/"1 @: |:))

  >1 2 3; 6 5 4

+/ (*/"1 (|: >1 2 3; 6 5 4))

+/ (*/"1 >1 6; 2 5; 3 4)

+/ 6 10 12

28

J



You can give verbose names to things:

sum       =: +/

of        =: @:

products  =: */"1

transpose =: |:

innerProduct =:

  sum of products of transpose

(J programmers don’t.)

J



● Primitive pure functions
● Combining forms: combinators, 

HoFs, “forks” & “hooks”
● Semantics defined by rewriting, 

not state transitions
● Enables purely algebraic reasoning 

about programs (“plug & chug”)
● Reuse mathematical intuitions 

from non-programming education
● Simple factoring of subprograms: 

“extract method” is cut & paste

Function-Level
Programming:
Summary



Three Four Five
Formal Systems of
Computation

● Lambda Calculus (1930s)
Alonzo Church

● Turing Machine (1930s)
Alan Turing

● Recursive Functions (1930s)
Kurt Gödel

● Combinatory Logic (1950s)
Moses Schönfinkel, Haskell Curry

● Concatenative Calculus (~2000s)
Manfred von Thun, Brent Kirby



[ A ] dup = [ A ] [ A ]

[ A ] [ B ] swap = [ B ] [ A ]

[ A ] drop =

[ A ] quote = [ [ A ] ]

[ A ] [ B ] cat = [ A B ]

[ A ] call = A

The Theory of Concatenative 
Combinators (2002) Brent Kirby

E ::= C Combinator
| [ E ] Quotation
| E1 E2 Composition

(E2 ∘ E1)

Concatenative Calculus



{ dup, swap, drop, quote, cat, call } is 
Turing-complete!

Smaller basis:

[ B ] [ A ] k = A
[ B ] [ A ] cake = [ [ B ] A ] [ A [ B ] ]

[ B ] [ A ] cons = [ [ B ] A ]
[ B ] [ A ] take = [ A [ B ] ]

Concatenative Calculus



● B — apply functions
● C — reorder values
● K — delete values
● W — duplicate values

Connection to logic: substructure!

● W — contraction
● C — exchange
● K — weakening

Combinatory Logic (BCKW)

Bkab = k(ab) Compose/apply
Ckab = kba Flip
Kka = k Constant
Wka = kaa Duplicate



Combinatory Logic

● BI = ordered + linear
“Exactly once, in order”
(Works in any category!)

● BCI = linear
“Exactly once”

● BCKI = affine
“At most once”

● BCWI = relevant
“At least once”

● BCKW = SKI
○ S = B(BW)(BBC)
○ K = K
○ I = WK

● SKI → LC (expand combinators)
● LC → SKI (abstraction algorithm)
● { B, C, K, W } = LC



Substructural Type Systems

● Rust, ATS, Clean, Haskell (soon)
● Rust (affine): if a mutable 

reference exists, it must be 
unique—eliminate data races & 
synchronization overhead

● Avoid garbage collection: 
precisely track lifetimes of 
objects to make memory usage 
deterministic (predictable perf.)

● Reason about any resource: 
memory, file handles, locks, 
sockets…

● Enforce protocols: “consume” 
objects that are no longer valid

● Prevent invalid state transitions
● Reversible computing
● Quantum computing



Substructural Rules in Concatenative Calculus

[ A ] dup k = [ A ] [ A ] k
Wka = kaa

[ A ] [ B ] swap k = [ B ] [ A ] k
Ckab = kba

[ A ] drop k = k
Kka = k

● Continuations are no longer 
scary or confusing

● “Current continuation” (call/cc) 
is simply the remainder of the 
program

● Saving a continuation is as easy 
as saving the stacks and 
instruction pointer



Concatenative Calculus
≈ Combinatory Logic
+ Continuation-Passing Style



“…all expressions denote functions 
[…] juxtaposition…denotes function 
composition.”



● Composition is the main way to 
build programs, but what are we 
composing functions of?

● We need a convenient data 
structure to store the program 
state and allow passing multiple 
values between functions

● Most concatenative languages use 
a heterogeneous stack, separate 
from the call stack, accessible to 
the programmer

● Other models proposed; stack is 
convenient & efficient in practice

Stacks



Literals (“nouns”) take stack & return 
it with corresponding value on top.

2 : ∀s. s → s × ℤ
"hello" : ∀s. s → s × string

Operators & functions (“verbs”) pop 
inputs from & push outputs to stack.

(+) : ∀s. s × ℤ × ℤ → s × ℤ
(±) : ∀s. s × ℤ × ℤ → s × ℤ × ℤ

Term 2 is a function, pushes value 2. 
2 3 + is a function, equal to 5. Can 
be split into 2 3 and + or 2 and 3 +.

Higher-order functions (“adverbs”) 
take functions (“quotations”).

["ay", "bee", "cee"]

{ "bo" (+) say } each

// aybo beebo ceebo

“Everything is an object a list a function”



: SQ ( n -- n^2 ) DUP * ;

2 SQ

Imperative or pure? Both!

2 SQ ⇒ 2 DUP * ⇒ 2 2 * ⇒ 4

2 ⇒ 2 2 ⇒ 4

: READ  (     -- str ) … ;

: EVAL  ( str -- val ) … ;

: PRINT ( val --     ) … ;

: LOOP  (     --     )

  READ EVAL PRINT LOOP ;

: REPL LOOP ;

Forth



Stack Shuffling

3 5     MAX

3 5     2DUP < IF SWAP THEN DROP

3 5 3 5 < IF SWAP THEN DROP

3 5 1   IF SWAP THEN DROP

3 5     SWAP DROP

5 3     DROP

5

: MAX 2DUP < IF SWAP THEN DROP ;

5 3     MAX

5 3     2DUP < IF SWAP THEN DROP

5 3 5 3 < IF SWAP THEN DROP

5 3 0   IF SWAP THEN DROP

5 3     DROP

5



Locals are simply lambda 
expressions in disguise—composing 
instead of applying. “Lambda” is 
decoupled into “anonymous function” 
and “variable binding”.

Remember: f g = g ∘ f = λs. g (f s)

f (→ x; g)

= λs. (λx. g (snd s)) (fst s)

Local Variables

Can be more readable to drop from 
function to value level with local 
variables.

dup2 (<) if { swap } drop

→ x, y;

if (x < y) { y } else { x }



Simple translation from concatenative terms to lambda terms:

(a b)′ = λs. b′ (a′ s)
[ a ]′ = λs. pair (λt. a′ t) s [strict]

= λs. pair a′ s [lazy]

dup′ = λs. pair (fst s) s
swap′ = λs. pair (fst (snd s)) (pair (fst s) (snd (snd s)))
…

Translation to Lambdas



Having the option to write operators 
infix makes it easier to copy & tweak 
math expressions from other 
languages, even if it breaks 
concatenativity.

Same goes for control flow: people 
are accustomed to if…elif…else 
and can choose a combinator form if 
they want its specific advantages.

(1 + 2) * (3 + 4)

1 2 (+) 3 4 (+) (*)

b neg

  + (b ^ 2 - 4 * a * c) sqrt

  / (2 * a)

b neg b 2 (^) 4 a (*) c (*) 

(-) sqrt (+) 2 a (*) (/)

Without local variables? Have fun.

A Spoonful of Sugar



● Data flow order matches 
program order: things happen 
the way you write them

● Syntax monoid: concatenation 
and empty program; semantic 
monoid: function composition 
and identity function on stacks

● Monoid homomorphism from 
syntax to semantics, preserving 
identity and joining operation

Close mapping from syntax to semantics

● Not an isomorphism: multiple 
input programs can map to the 
same semantics

● Programs compose! The 
meaning of the concatenation of 
two programs is the composition 
of their meanings

● Can be concatenative at the 
lexical level (Forth, Factor) or the 
term level (Kitten)



Factor(ing)

concatenative.org wiki

“C”:

var price =

  customer.orders[0].price;

Factor:

orders>> first price>>



var orders =

  (customer == null ? null

    : customer.orders);

var order =

  (orders == null ? null

    : orders[0]);

var price =

  (order == null ? null

    : order.price);

dup [ orders>> ] when

dup [ first ] when

dup [ price>> ] when

Factor(ing)

concatenative.org wiki



Factor(ing)

concatenative.org wiki

dup [ orders>> ] when

dup [ first ] when

dup [ price>> ] when

MACRO: maybe ( quots -- )

  [ '[ dup _ when ] ] map

  [ ] join ;

{ [ orders>> ] [ first ]

  [ price>> ] } maybe



● Pure functions are a good default 
unit of behavior

● Function composition is a good 
default means of combining 
behaviors

● Juxtaposition is a convenient 
notation for composition

● Having a simple language with a 
strong mathematical foundation 
makes it easier to develop tooling 
and reason about code

Value Propositions 
of Concatenative 
Programming



Implementation



● Forth: typically threaded code to 
support dynamic behavior

● Stack is reified in memory for 
flexibility, but dynamic effects 
(?DUP, PICK) are frowned upon 
anyway

● If you have enough arity & type 
information, you can do ordinary 
native compilation

define ite<R…, S…>

(R…, (R… → S…), (R… → 

S…),

  Bool → S…):

  not if { swap } drop call

/* → f, t, x; if (x) { f }

else { t } call */

{"good"} {"oh no"} (1 < 2) ite

How do we make this efficient?



Implementation of Stack-based 
Languages on Register Machines 
(1996) M. Anton Ertl

● Spectrum of representations
● Represent the stack in memory
● Cache top value in a register 

(huge win for code size & perf.)
● Cache multiple values
● FSM of possible registers in calls

Implementation

● Conversion to SSA/SSI/CPS
○ Program is post-order 

flattened data flow graph
○ No dynamic stack ops
○ Must know arity of functions 

/ generate specializations
○ Uses standard register 

allocation techniques
○ Stack shuffling becomes 

mov or no-op



Linear Lisp

Linear Logic and Permutation 
Stacks—The Forth Shall Be 
First (1993) Henry Baker

● Variables are consumed when 
used; copies must be explicit

● Can be compiled efficiently to a 
stack machine architecture

● Reduce Von Neumann bottleneck

“A…stack cache utilizes its space on 
the chip & memory bandwidth better 
than a register bank of the same 
capacity […] A linear stack machine 
should be even more efficient […] all of 
the data held in the stack cache is live 
data and is not just tying up space.”



Linear Lisp

Linear Logic and Permutation 
Stacks—The Forth Shall Be 
First (1993) Henry Baker

● “Most people describe the top 
several positions of the Forth 
stack as ‘locations’, but it is more 
productive to think of them as 
‘busses’, since no addressing is 
required to read from them at 
all--the ALU is directly connected 
to these busses.”

● “…one can conceive of multiple 
arithmetic operations being 
performed simultaneously on a 
number of the top items of the 
‘stack’…in parallel”



● Because call rate is so high, and 
functions are small, you can use 
the call stack to store not return 
addresses, but functions 
themselves

● A “call” copies the contents of a 
function onto the return stack 
(queue) and proceeds

● Can be implemented with a cyclic 
shift register—small loops are just 
repeated shifts of this register, no 
branch prediction required

Linear Lisp

Linear Logic and Permutation 
Stacks—The Forth Shall Be 
First (1993) Henry Baker



● Pros: uniform representation, 
generic functions are easy—no 
need to generate specializations

● Cons: performance overhead of 
indirections; need RC or GC

● With no types or full static types, 
most things can be unboxed

● Small arrays: put elements directly 
on the stack; size is known

● Closures: copy captured variables 
onto stack w/ function pointer; 
invoking closure is just pop+jump

● Otherwise: COW/RC

Value 
Representation: 
Boxing?



Static Typing



● Most concatenative languages are 
dynamically typed (Joy, Factor, 
PostScript) or untyped (Forth)

● There have been a handful of 
Forths with simple type checkers

● Cat was the first concatenative 
language with static types based 
on Hindley–Milner; now defunct

● Nobody else was working on a 
statically typed one, so I started 
working on Kitten (2011)

State of Type 
Systems in 
Concatenative 
Programming



Approach used in some static Forths: 
each function has m inputs and n 
outputs

dup : a -- a a

swap : a b -- b a

drop : a --

Problem: no stack polymorphism

call
1,1

 : a ( a -- b ) -- b

call
1,2

 : a ( a -- b c ) -- b c

call
2,1

 : a b ( a b -- c ) -- c

…

“Simply Aritied” 
Languages

Type Inference for Stack 
Languages (2017) Rob Kleffner



Stack represented as a product type 
(tuple); “rest of stack” is polymorphic.

● dup : ∀sa. s × a → s × a × a
● swap : ∀sab. s × a × b → s × b × 

a
● drop : ∀sa. s × a → s
● call : ∀st. s × (s → t) → t

Modus ponens: given a state & 
proof (closure) it implies a new 
state, can get to the new state

Typing with Tuples

Types can get unwieldy—add 
syntactic sugar to make it usable.

define map<S…, A, B>

(S…, List<A>,

  <T…>(T…, A → T… → B)

  → S…, List<B>)

define map<A, B>

(List<A>, (A → B) → List<B>)



● All functions are polymorphic 
wrt. the part of the stack they 
don’t touch; higher-order 
functions are higher-rank; 
recursion is polymorphic

● Complete and Easy Bidirectional 
Type Checking for Higher-Rank 
Polymorphism Joshua Dunfield, 
Neel Krishnaswami

Challenges with Stack Polymorphism

E.g., functional argument to map must 
be applied on different stack states.

map : ∀sab.
(s × List a × (s × a → s × b)
  → s × List b)

map : ∀sab.
(s × List a × ∀t. (t × a → t × b)
  → s × List b)



E.g., functional argument to dip may 
have an arbitrary (but known) effect.

dip : ∀sta. (s × a × (s → t) → t × a)

{ drop } dip

swap drop

{ "meow" } dip

"meow" swap

● Higher-order functions can be 
polymorphic over the 
stack—need to generate 
specializations based on arity 
(and calling convention)

Challenges with Stack Polymorphism



Representing 
Effects

● Can’t “do” anything with only pure 
functions; should we throw up our 
hands and have an impure 
language? (Forth, Factor, Cat, &al.)

● Haskell uses monads: represent 
actions as values, build them with 
pure functions; under the hood, 
compile to imperative code

● Problem: monads don’t 
compose—can’t (always, easily) 
mix effects

● Solution: algebraic effects



define newline (-> +IO):

  "\n" print

define print_or_fail

(Bool -> +IO +Fail):

-> x;

if (x):

"good" print

else:

"bad" fail

If f needs +A and g needs +B, f g 
needs +A +B or +B +A (commutative)

Effect Types 
(Permissions)
in Kitten



Inspired by Koka (2012) Daan Leijen

Compositional: a function has the 
effects of the functions it calls.

Polymorphic: a higher-order function 
has the effect of its argument:

map<A, B, +P> (List<A>,

 (A → B +P) → List<B> +P)

Effect Types (“Permissions”) in Kitten

● Effects: enforce what a function 
is allowed to do (e.g. I/O, unsafe)

● Coeffects: enforce constraints 
on the environment where a 
function is called (e.g. platform)

● RAII: “handler” that discharges a 
permission (e.g. locking)

● Optimizations: functions can be 
reordered iff their permissions 
are commutative



Finally…



Summary ● Simple, elegant foundation
● Surprising connections to deep 

areas of computer science
● Admits efficient implementation 

both in theory and in practice
● Amenable to programming 

“exotic” machines (stack archs, 
reversible/quantum computers)

● Easy to reason about, modify, & 
refactor programs; easy to write 
good tooling with confidence

● Naturally supports static types and 
effect typing



Questions?



Forth style: “compiling” vs. 
“interpreting” words (or mixed, 
depending on STATE). Factor uses this 
with its “macros” and “parsing words”.

Treat preceding terms as stack, 
evaluating code at compile time to 
construct new terms:

"%s: %d" #printf

Term → Term

List<Char>, Int32 → +IO

Bonus: 
Metaprogramming



both<A, B, C, D> // ***

(A, B, (A → C), (B → D) → C, 

D)

both_to<A, B, C> // &&&

(A, (A → B), (A → C) → B, C)

dip<S…, T…, A> // first

(S…, A, (S… → T…) → T…, A)

Bonus: Arrows

Concatenative programming is 
closely related to the “arrows” of 
John Hughes for describing static 
data flow graphs.

(f *** g) (x, y) = (f x, g y)

x y \f \g both

(f &&& g) x = (f x, g x)

x \f \g both_to


