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What is deep learning?
In a sentence: Layers of parametric, differentiable operations whose parameters 
are changed using gradient information.

Below is a Convolutional Neural Network, one of the most commonly used type ( 
along with LSTMs)



Deep Learning- Yes It Matters

(A picture is worth a thousand words)



Vision: Deep Learning Supercomputing 
on a Chip (“SoC”)
Ideal is 1 PetaFLOP of compute (fp8/fp16) in a TDP similar to the Volta.

And not only that, we want it to be an usable PetaFLOP, we don’t want to 

advertise something like 120 TFLOPs peak but get much less in the real world.

And of course, we need to find a way to feed these compute units with 

enough bandwidth. 

Aggregate compute should not be measured in petaflops while memory 

bandwidth is measured in gigabytes.

https://www.hpcwire.com/2017/11/27/v100-good-not-great-select-deep-learning-aps-says-xcelerit/


Can Moore’s Law Save us?
CMOS Scaling in Danger- “The party isn’t over yet but the cops have been called and the 

music has been turned down”. 

Dennard Scaling already on its deathbed. 

Picture Source: Nvidia



What we DON’T Want...



5-10X Better than TPU/IPU/?PU
To reach our goal, we need to be 5-10X better than the Google “TPU”, Graphcore “IPU”, 
Wave Computing “DPU”, etc.

These are already processors supposedly optimized for deep learning, how can we be an 
order of magnitude better than them?

Start where there is three orders of magnitude difference.

fJ (compute) vs pJ (memory)

So, Competitor’s           “2.9/11.6 PetaOPs/s” →  345 kW/1.38 MegaW for memory only. 



What’s the Obstacle to our “DL SoC” vision?
Biggest problem is data movement. 

Problem is multi-level, both off-chip:

~119 pJ/byte for off-chip HMC memory access and ~56 pJ/byte for HBM

And on-chip:

8 pJ/byte/mm on-chip (Why we need Exascale and why we won ’t get there 
by 2020 ) 

https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.3-memory-FPGA/HC23.18.320-HybridCube-Pawlowski-Micron.pdf
https://www.cs.utah.edu/thememoryforum/mike.pdf
https://www.ssken.gr.jp/MAINSITE/event/2013/20130827-sci-1/lecture-01/SSKEN_sci2013-1_simon_presentation.pdf
https://www.ssken.gr.jp/MAINSITE/event/2013/20130827-sci-1/lecture-01/SSKEN_sci2013-1_simon_presentation.pdf


The Real Problem is Being Ignored
Industry and startups 
laser focused on this 
problem (e.g. INT16 
math a la Intel )

Ignoring this problem 

Or attempts are 
made in attacking 
the memory problem 
but clearly fall short 
(e.g. 300MB per die 
isn’t enough…)

Picture Source: DARPA



Hierarchical Approach

Architecture

Circuit Level

Device Level



Architecture Level Innovations
● Optimized to reduce data movement

-  ~50 um between compute stages (repeaterless!)

● Dataflow (“dataflow-only”) architecture: more suitable for DL 

computations than control flow architecture used by competitors. 

● True dataflow, at both high/low level, not control flow + data flow.

● Novel data use optimizations for key operations (e.g. convolutions) ahead 

of the literature.

● “Tensor native” memory architecture- address large pieces of memory at 

once. Less work for address decoder, easier to get bandwidth and I/O and 

allows for novel bitline hierarchy techniques.

● Pipelining to expose parallelism, not batches.

One DLE has all the memory it needs, no external memory needed.



High Level View- Just a Sea of DLEs
● 1 DLE ~= 1 Layer

One layer can use multiple DLEs 
for larger layers.

● Communication between 
neighboring DLEs only.

● “Flyover” network for skip 
connections (Level 1 + 2)

● No instruction decoders- 
programmed like CGRA

● Input and output are 
synchronous, internally 
asynchronous.
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Nine DLEs for illustration only, ~2400 in a Petascale chip (approx 200K 
ALUs)



DLE Block Diagram

Activation Memory (Tensor and tensor slice addressable) 

Weight Memory (tensor slice 
addressable) 

Activation Buffer(s)

Writeback Buffer(s)

Convolution/MatMul Pipeline
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Circuit Level Innovation
● Underappreciated source of “data movement” is in clock lines.

- Up to ~60% of total power (Prof. Dally: Exascale Challenges)

● New form of asynchronous logic:

- 10% overhead compared to 2X+ for previous SOTA. 

- Functionality immune to process variations

- Higher performance and no guardbanding necessary

- True asynchronous logic (not GALS like some competitors)

- ~12 “GHz” effective and sustainable “clock” rate (measured on 28nm).

- ~45.2ps delay and  ~6 fJ energy at 0.7v supply for 4-bit ALU, deeply 
pipelined to 8-bit multiply and 16-bit accumulate. 

- Memory access hyper-pipelined with dynamic logic in sense amps.

https://www.cs.colostate.edu/~cs575dl/Sp2015/Lectures/Dally2015.pdf


Data: Done/Ready Detection for Async
The “done/ready” detection is the critical core of (almost) all asynchronous 

logic systems.

Compared to standard technology, our advantages are:

Energy: 3.4642X to 3.5414X 

Delay: 2.2998X to 3.5300X



Memory Cell
We can get huge advantages by putting all our memory on die. 
 -Unfortunately, impossible with standard 6T SRAM today. 

Any feasible new memory must be CMOS compatible.
No new materials and no changes to the process (e.g. no litho steps)

Our memory cell is just that, “zero-change” to the process itself:

5X OR (with multilevel) 10X denser than the standard 6T SRAM, 6X to 12X 
(w/multilevel) lower leakage per bit than standard 6T SRAM. 

TCAD simulations complete (promising for multilevel) and MPW in January for 
silicon validation. 



3D Stacking- the Wireless Way
Power Speed Area

~7.9 fJ/bit ~40 
GBits/S

~9 um^2

Area underneath CAN be used.

No ESD protection needed for these data links.

Cross-talk removed by spacing and/or multiplexing.
 

Source: SPICE Simulation* 

*Waveform



Maximum Achievable Bandwidth per 
mm^2
TSVs: 400 GBits/S @ ~110 fJ/bit Source (slide 23)
 (But no logic underneath!) 

Inductor coils: 800 GBit/S @ ~110 fJ/bit Source
(We get logic underneath though!)

Wireless link: 10,000 GBit/S @ ~8 fJ/bit 
We get logic underneath too! 
Can be made higher with multiplexing.

Image source: 
ThruChip

https://www.smta.org/chapters/files/Carolinas_Franzon_tutorial_SMTA.pdf
http://web.stanford.edu/class/ee380/Abstracts/141022-slides.pdf


3D Stacking: The Thermal Wall
● 3D stacking is limited today by 

thermal constraints.
● Stacking two dice in the ~300W 

TDP regime is impractical, limiting 
the usefulness of 3D stacking.

Observations from FEM analysis: 
● Heat is concentrated in the center 

in homogeneous dice as the 
escape of the sides aren’t there.

● Compute regions are hotspots- do 
worse when a die is on top.

Source: 
SemiWiki

Source:
SemiEngineering



3D Stacking: Tackling the Thermal Wall
Exploit observations from FEM analysis: Heat “Gaussians” around hotspots:
● Thermal density of memory regions of dice is less than the thermal density of 

compute regions.
→ Place memory regions on top of each other.

“Thermal Multiplexing”: Regions on top of each other work via space-time multiplexing. 



Comparisons to Other DL Chips

Wave Computing Their ~120 PJ vs our 
~0.5 PJ...

Graphcore
● Has major bottlenecks (not on ours)
● 600 MB not enough (e.g. VGGNet > 600MB, 

real-world data up to 40X bigger ).
● Our on-chip memory is ~1.5GB (on 28nm) to 6/8 GB 

(on FinFET 7nm)
● Their ~200 TFLOPs vs our ~1 PetaFLOPs

Not performant, energy 
efficient OR sustainable.



Compared to Intel Nervana (“Lake Crest”)
~60 pJ/byte (Nervana) vs ~0.5 pJ/byte (Vathys)



Compared to the TPU v1 A lot of on-chip data 
movement with an 
unified memory.

Also, must “lower” 
convolutions to a 
matmul, problematic for 
convolutions.

Image courtesy of Google of course.

Move 8-bits 1mm 
On-Chip (on 10nm)

~8 
pJ 

DRAM access 640
pJ
!!!



Compared to TPU v2

No programmability : ( 

~60 pJ/byte (TPU v2) vs ~0.5 pJ/byte (Vathys)



Compared to the “Analog Alternative”

● Number of problems with analog computation, even for DL.
● Current approaches are flash memory based
● Requires power and area intensive ADCs and DACs
● Does not solve the data movement problem (in fact makes it worse)

● Huge endurance problem for flash memory (~10^6 max cycles)
■ At “1 GHz” will die in ~1 millisecond 

● Flash memory is intrinsically unscalable to lower geometries due to 
leakage difficulties, low number of carriers in the floating gate.

● And of course…. No evidence it can actually retain accuracy...



The Software Stack (aka “How do I 
actually use it?”)
Framework: 
TensorFlow, 
Torch, etc.

Computational Graph 
IR (e.g. ONNX)

DNN-cc Graph 
Compiler

Vathys Chip Data scientist sees no difference 
except 10X faster 

than TPU, IPU, DPU etc.

Vathys chip is a 
drop-in replacement 

for nVidia GPU.



Timeline (aka “I want one, when can I buy 
one?”)
1. MPW going out in January 2018 to silicon validate 3D stacking and 

memory cell.

2. Engineering samples in Q2 2018, funding contingent.

3. Production shipping in Q3 2018, funding contingent.

4. Production shipping on 7nm in Q1 2019, also funding contingent.



Thank you!

Any questions?


